Skip to main content

Cardiac Fibre Trace Clustering for the Interpretation of the Human Heart Architecture

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

Abstract

Cardiac fibre architecture plays a key role in heart function. Recently, the estimation of fibre structure has been simplified with diffusion tensor MRI (DT-MRI). In order to assess the heart architecture and its underlying function, with the goal of dealing with pathological tissues and easing inter-patient comparisons, we propose a methodology for finding cardiac myofibrille trace correspondences across a fibre population obtained from DT-MRI data. It relies on the comparison of geometrical and topological clustering operating on different fibre representation modes (fixed length sequences of 3-D coordinates with or without ordering strategy, and 9-D vectors for trace shape approximation). In geometrical clustering (or k-means) each fibre path is assigned to the cluster with nearest barycenter. In topological (or spectral) clustering the data is represented by a similarity graph and the graph vertices are divided into groups so that intra-cluster connectivity is maximized and inter-cluster connectivity is minimized.

Using these different clustering methods and fibre representation modes, we predict different fibre trace classifications for the same cardiac dataset. These classification results are compared to the human heart architecture models proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: SODA (2007)

    Google Scholar 

  2. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44(4), 625–632 (2000)

    Article  Google Scholar 

  3. Le Bihan, D., Van Zijl, P.: From the diffusion coefficient to the diffusion tensor. NMR Biomed. 15, 431–434 (2002)

    Article  Google Scholar 

  4. Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.F.: Clustering fiber traces using normalized cuts. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 368–375. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Corouge, I., Gouttard, S., Gerig, G.: Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In: ISBI, pp. 344–347 (2004)

    Google Scholar 

  6. Ding, Z., Gore, J.C., Anderson, A.W.: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI. MRM 49, 716–721 (2003)

    Article  Google Scholar 

  7. Frindel, C., Robini, M., Rapacchi, S., Stephant, E., Zhu, Y., Croisille, P.: Towards in vivo diffusion tensor MRI on human heart using edge-preserving regularization. In: Int. Conf. IEEE EMBS 2007, pp. 6007–6010 (2007)

    Google Scholar 

  8. Frindel, C., Schaerer, J., Gueth, P., Clarysse, P., Zhu, Y.M., Robini, M.: A global approach to cardiac tractography. In: ISBI, pp. 883–886 (2008)

    Google Scholar 

  9. Gerig, G., Gouttard, S., Corouge, I.: Analysis of brain white matter via fiber tract modeling. In: EMBS, p. 426 (2004)

    Google Scholar 

  10. Gilbert, S.H., Benson, A.P., Li, P.L., Holden, A.V.: Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur. J. Cardiothorac. Surg. 32, 231–249 (2007)

    Article  Google Scholar 

  11. Harrington, K.B., Rodriguez, F., Cheng, A., Langer, F., Ashikaga, H., Daughters, G.T., Criscione, J.C., Ingels, N.B., Miller, D.C.: Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics. Am. J. Physiol. Heart Circ. Physiol. 288, H132430 (2005)

    Article  Google Scholar 

  12. Helm, P.A., Younes, L., Beg, M.F., Ennis, D.B., Leclercq, C., Faris, O.P., McVeigh, E., Kass, D., Miller, M.I., Winslow, R.L.: Evidence of structural remodeling in the dyssynchronous failing heart. Circ. Res. 98, 125–132 (2006)

    Article  Google Scholar 

  13. Jonasson, L., Hagmann, P., Thiran, J.-P., Wedeen, V.J.: Fiber tracts of high angular resolution diffusion mri are easily segmented with spectral clustering. In: ISMRM (2005)

    Google Scholar 

  14. Streeter Jr., D.D.: Gross morphology and fiber geometry of the heart, pp. 61–112. Williams and Wilkins, Baltimore (1979)

    Google Scholar 

  15. Kocica, M.J., Corno, A.F., Carreras-Costa, F., Ballester-Rodes, M., Moghbel, M.C., Cueva, C.N.C., Lackovic, V., Kanjuh, V.I., Torrent-Guasp, F.: The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur. J. Cardiothorac. Surg. 29, S21–S40 (2006)

    Article  Google Scholar 

  16. Krehl, L.: Beiträge zur Kenntniss der Füllung und Entleerung des Herzens. Abh. Math.-Phys. Kl Saechs. Ges. Wiss. 17, 341–362 (1891)

    Google Scholar 

  17. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269, H57182 (1995)

    Google Scholar 

  18. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inform. Theory 28, 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14, pp. 849–856. MIT Press, Cambridge (2001)

    Google Scholar 

  20. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22, 888–905 (2000)

    Article  Google Scholar 

  21. Shimony, J., Snyder, A., Lori, N., Contum, T.: Automated fuzzy clustering of neuronal pathways in diffusion tensor tracking. In: ISMRM (2005)

    Google Scholar 

  22. Tsai, A., Westin, C.F., Hero, A.O., Willsky, A.S.: Fiber tract clustering on manifolds with dual rootedgraphs. In: CVPR, pp. 1–6 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frindel, C., Robini, M., Schaerer, J., Croisille, P., Zhu, YM. (2009). Cardiac Fibre Trace Clustering for the Interpretation of the Human Heart Architecture. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics