Skip to main content

A Robust Bayesian Two-Sample Test for Detecting Intervals of Differential Gene Expression in Microarray Time Series

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

  • 1679 Accesses

Abstract

Understanding the regulatory mechanisms that are responsible for an organism’s response to environmental changes is an important question in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in static as well as in time-course experiments, have been proposed. While these tests answer the question whether a gene is differentially expressed, they do not explicitly address the question when a gene is differentially expressed, although this information may provide insights into the course and causal structure of regulatory programs. In this article, we propose a two-sample test for identifying intervals of differential gene expression in microarray time series. Our approach is based on Gaussian process regression, can deal with arbitrary numbers of replicates and is robust with respect to outliers. We apply our algorithm to study the response of Arabidopsis thaliana genes to an infection by a fungal pathogen using a microarray time series dataset covering 30,336 gene probes at 24 time points. In classification experiments our test compares favorably with existing methods and provides additional insights into time-dependent differential expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kerr, M., Martin, M., Churchill, G.: Analysis of Variance for Gene Expression Microarray Data. Journal of Computational Biology 7(6), 819–837 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P.: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica 12, 111–140 (2002)

    Google Scholar 

  3. Efron, B., Tibshirani, R., Storey, J.D., Tusher, V.: Empirical Bayes Analysis of a Microarray Experiment. Journal of the American Statistical Association 96, 1151–1160 (2001)

    Article  Google Scholar 

  4. Ishwaran, H., Rao, J.: Detecting differentially expressed genes in microarrays using Bayesian model selection. Journal of the American Statistical Association 98, 438–455 (2003)

    Article  Google Scholar 

  5. Lonnstedt, I., Speed, T.: Replicated microarray data. Statistica Sinica 12, 31–46 (2002)

    Google Scholar 

  6. Bar-Joseph, Z., Gerber, G., Simon, I., Gifford, D.K., Jaakkola, T.S.: Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proceedings of the National Academy of Sciences of the United States of America 100, 10146–10151 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Storey, J.D., Xiao, W., Leek, J.T., Tompkins, R.G., Davis, R.W.: Significance analysis of time course microarray experiments. Proceedings of the National Academy of Sciences of the United States of America 102, 12837–12842 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tai, Y.C., Speed, T.P.: A multivariate empirical Bayes statistic for replicated microarray time course data. Annals of Statistics 34, 2387–2412 (2006)

    Article  Google Scholar 

  9. Angelini, C., De Canditiis, D., Mutarelli, M., Pensky, M.: A Bayesian Approach to Estimation and Testing in Time-course Microarray Experiments. Statistical Applications in Genetics and Molecular Biology 6 (September 2007)

    Google Scholar 

  10. Yuan, M.: Flexible temporal expression profile modelling using the Gaussian process. Computational Statistics and Data Analysis 51, 1754–1764 (2006)

    Article  Google Scholar 

  11. Lawrence, N.D., Sanguinetti, G., Rattray, M.: Modelling transcriptional regulation using Gaussian Processes. In: Advances in Neural Information Processing Systems, vol. 19, pp. 785–792. MIT Press, Cambridge (2007)

    Google Scholar 

  12. Chu, W., Ghahramani, Z., Falciani, F., Wild, D.: Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics 21(16), 3385–3393 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    Google Scholar 

  14. Kuss, M., Pfingsten, T., Csato, L., Rasmussen, C.E.: Approximate Inference for Robust Gaussian Process Regression. Technical report, Max Planck Institute for Biological Cybernetics, Tubingen (2005)

    Google Scholar 

  15. Minka, T.: Expectation propagation for approximate Bayesian inference. Uncertainty in Artificial Intelligence 17, 362–369 (2001)

    Google Scholar 

  16. Stegle, O., Fallert, S.V., MacKay, D.J.C., Brage, S.: Gaussian process robust regression for noisy heart rate data. IEEE Trans. Biomed. Eng. 55, 2143–2151 (2008)

    Article  PubMed  Google Scholar 

  17. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9, 436–442 (2006)

    Article  PubMed  Google Scholar 

  18. Allemeersch, J., Durinck, S., Vanderhaeghen, R., Alard, P., Maes, R., Seeuws, K., Bogaert, T., Coddens, K., Deschouwer, K., Hummelen, P.V., Vuylsteke, M., Moreau, Y., Kwekkeboom, J., Wijfjes, A.H., May, S., Beynon, J., Hilson, P., Kuiper, M.T.: Benchmarking the catma microarray. a novel tool forarabidopsis transcriptome analysis. Plant Physiol. 137, 588–601 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, H., Kerr, M., Cui, X., Churchill, G.: MAANOVA: a software package for the analysis of spotted cDNA microarray experiments. The Analysis of Gene Expression Data: Methods and Software, pp. 313–341

    Google Scholar 

  20. Heard, N., Holmes, C., Stephens, D., Hand, D., Dimopoulos, G.: Bayesian coclustering of Anopheles gene expression time series: Study of immune defense response to multiple experimental challenges. Proceedings of the National Academy of Sciences 102(47), 16939–16944 (2005)

    Article  CAS  Google Scholar 

  21. Heard, N.A., Holmes, C.C., Stephens, D.A.: A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves. Journal of the American Statistical Association 101(473), 18 (2006)

    Article  CAS  Google Scholar 

  22. Falcon, S., Gentleman, R.: Using GOstats to test gene lists for GO term association. Bioinformatics 23(2), 257 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Stegle, O., Denby, K., Wild, D.L., Ghahramani, Z., Borgwardt, K.: Supplementary material: A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series (2009), http://www.inference.phy.cam.ac.uk/os252/projects/GPTwoSample

  24. Yuan, C., Neubauer, C.: Variational Mixture of Gaussian Process Experts. In: Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge (2008)

    Google Scholar 

  25. Rasmussen, C.E., Ghahramani, Z.: Infinite Mixtures of Gaussian Process Experts. In: Advances in Neural Information Processing Systems, vol. 19, pp. 881–888. MIT Press, Cambridge (2001)

    Google Scholar 

  26. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational methods for graphical models. Machine Learning 37, 183–233 (1999)

    Article  Google Scholar 

  27. Kullback, S., Leibler, R.: On Information and Sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  Google Scholar 

  28. Seeger, M.: Expectation Propagation for Exponential Families. Technical report, University of California at Berkeley (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stegle, O., Denby, K., Wild, D.L., Ghahramani, Z., Borgwardt, K.M. (2009). A Robust Bayesian Two-Sample Test for Detecting Intervals of Differential Gene Expression in Microarray Time Series. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics