Skip to main content

The Multi-State Perfect Phylogeny Problem with Missing and Removable Data: Solutions via Integer-Programming and Chordal Graph Theory

  • Conference paper
Book cover Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

The Multi-State Perfect Phylogeny Problem is an extension of the Binary Perfect Phylogeny Problem, allowing characters to take on more than two states. In this paper we consider three problems that extend the utility of the multi-state perfect phylogeny model: The Missing Data (MD) Problem where some entries in the input are missing and the question is whether (bounded) values for the missing data can be imputed so that the resulting data has a multi-state perfect phylogeny; The Character-Removal (CR) Problem where we want to minimize the number of characters to remove from the data so that the resulting data has a multi-state perfect phylogeny; and The Missing-Data Character-Removal (MDCR) Problem where the input has missing data and we want to impute values for the missing data to minimize the solution to the resulting Character-Removal Problem.

We detail Integer Linear Programming (ILP) solutions to these problems for the special case of three permitted states per character and report on extensive empirical testing of these solutions. Then we develop a general theory to solve the MD problem for an arbitrary number of permitted states, using chordal graph theory and results on minimal triangulation of non-chordal graphs. This establishes new necessary and sufficient conditions for the existence of a perfect phylogeny with (or without) missing data. We implement the general theory using integer linear programming, although other optimization methods are possible. We extensively explore the empirical behavior of the general solution, showing that the methods are very practical for data of size and complexity that is characteristic of many current applications in phylogenetics. Some of the empirical results for the MD problem with an arbitrary number of permitted states are very surprising, suggesting the existence of additional combinatorial structure in multi-state perfect phylogenies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. on Computing 23, 1216–1224 (1994)

    Article  Google Scholar 

  2. Berry, A., Bordat, J.-P., Cogis, O.: Generating All the Minimal Separators of a Graph. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 167–172. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bodlaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny. In: Proc. of the 19’th Inter. colloquium on Automata, Languages and Programming, pp. 273–283 (1992)

    Google Scholar 

  4. Buneman, P.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212 (1974)

    Article  Google Scholar 

  5. Dress, A., Steel, M.: Convex tree realizations of partitions. Applied Math. Letters 5, 3–6 (1993)

    Article  Google Scholar 

  6. Estabrook, G., Johnson, C., McMorris, F.: An idealized concept of the true cladistic character. Math. Bioscience 23, 263–272 (1975)

    Article  Google Scholar 

  7. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2004)

    Google Scholar 

  8. Fernandez-Baca, D.: The perfect phylogeny problem. In: Du, D.Z., Cheng, X. (eds.) Steiner Trees in Industries. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  9. Fernandez-Baca, D., Lagergren, J.: A polynomial-time algorithm for near-perfect phylogeny. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 670–680. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Fitch, W.: Towards finding the tree of maximum parsimony. In: Estabrook, G.F. (ed.) Proceedings of the eighth international conference on numerical taxonomy, pp. 189–230. W.H. Freeman, New York (1975)

    Google Scholar 

  11. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combinatorial Theory, B 16, 47–56 (1974)

    Article  Google Scholar 

  12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    Google Scholar 

  13. Gusfield, D.: Efficient algorithms for inferring evolutionary history. Networks 21, 19–28 (1991)

    Article  Google Scholar 

  14. Gusfield, D., Frid, Y., Brown, D.: Integer programming formulations and computations solving phylogenetic and population genetic problems with missing or genotypic data. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 51–64. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Gusfield, D., Wu, Y.: The three-state perfect phylogeny problem reduces to 2-SAT (to appear)

    Google Scholar 

  16. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathematics 306, 297–317 (2006)

    Article  Google Scholar 

  17. Hudson, R.: Generating samples under the Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Kannan, S., Warnow, T.: Inferring evolutionary history from DNA sequences. SIAM J. on Computing 23, 713–737 (1994)

    Article  Google Scholar 

  19. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies when the number of character states is fixed. SIAM J. on Computing 26, 1749–1763 (1997)

    Article  Google Scholar 

  20. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. Siam Monographs on Discrete Mathematics (1999)

    Google Scholar 

  21. Parra, A., Scheffler, P.: How to use the minimal separators of a graph for its chordal triangulation. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 123–134. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  22. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Applied Mathematics 79, 171–188 (1997)

    Article  Google Scholar 

  23. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. SIAM J. on Computing 33, 590–607 (2004)

    Article  Google Scholar 

  24. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    Google Scholar 

  25. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. of Classification 9, 91–116 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gusfield, D. (2009). The Multi-State Perfect Phylogeny Problem with Missing and Removable Data: Solutions via Integer-Programming and Chordal Graph Theory. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics