Skip to main content

Algorithms and Experiments for Clique Relaxations—Finding Maximum s-Plexes

  • Conference paper
Experimental Algorithms (SEA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5526))

Included in the following conference series:

  • 1116 Accesses

Abstract

We propose new practical algorithms to find degree-relaxed variants of cliques called s-plexes. An s-plex denotes a vertex subset in a graph inducing a subgraph where every vertex has edges to all but at most s vertices in the s-plex. Cliques are 1-plexes. In analogy to the special case of finding maximum-cardinality cliques, finding maximum-cardinality s-plexes is NP-hard. Complementing previous work, we develop combinatorial, exact algorithms, which are strongly based on methods from parameterized algorithmics. The experiments with our freely available implementation indicate the competitiveness of our approach, for many real-world graphs outperforming the previously used methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures for vertex cover kernelization. Theory Comput. Syst. 41(3), 411–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balasundaram, B., Butenko, S., Hicks, I.V., Sachdeva, S.: Clique relaxations in social network analysis: The maximum k-plex problem (February 2008) (manuscript), http://iem.okstate.edu/baski/files/kplex4web.pdf

  3. Batagelj, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data/ (accessed, January 2009)

  4. Chesler, E.J., et al.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37(3), 233–242 (2005)

    Article  Google Scholar 

  5. DIMACS. Maximum clique, graph coloring, and satisfiability. Second DIMACS implementation challenge (1995), http://dimacs.rutgers.edu/Challenges/ (accessed, November 2008)

  6. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser and Trotter’s local optimization theorem. In: Proc. 26th STACS, Germany, pp. 409–420. IBFI Dagstuhl, Germany (2009)

    Google Scholar 

  7. Grossman, J., Ion, P., Castro, R.D.: The Erdős number project (2007), http://www.oakland.edu/enp/ (accessed, January 2009)

  8. Komusiewicz, C., Hüffner, F., Moser, H., Niedermeier, R.: Isolation concepts for enumerating dense subgraphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 140–150. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. McClosky, B., Hicks, I.V.: Combinatorial algorithms for the maximum k-plex problem (January 2009) (manuscript), http://www.caam.rice.edu/~bjm4/CombiOptPaper.pdf

  10. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  11. Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algorithms for nontrivial generalizations of Vertex Cover. Discrete Appl. Math. 152(1-3), 229–245 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120(1-3), 197–207 (2002)

    Article  MathSciNet  Google Scholar 

  13. Sanchis, L.A., Jagota, A.: Some experimental and theoretical results on test case generators for the maximum clique problem. INFORMS J. Comput. 8(2), 103–117 (1996)

    Article  MATH  Google Scholar 

  14. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. Journal of Mathematical Sociology 6, 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, B., Pei, X.: A parallel algorithm for enumerating all the maximal k-plexes. In: Washio, T., Zhou, Z.-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C., Freire, M.M. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4819, pp. 476–483. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moser, H., Niedermeier, R., Sorge, M. (2009). Algorithms and Experiments for Clique Relaxations—Finding Maximum s-Plexes. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02011-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02010-0

  • Online ISBN: 978-3-642-02011-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics