Skip to main content

Competitive Buffer Management with Stochastic Packet Arrivals

  • Conference paper
Experimental Algorithms (SEA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5526))

Included in the following conference series:

  • 1012 Accesses

Abstract

We study a variant of Naor’s [23] online packet buffering model: We are given a (non-preemptive) fifo buffer (e.g., in a network switch or a router) and packets that request transmission arrive over time. Any packet has an intrinsic value R and we have to decide whether to accept or reject it. In each time-step, the first packet in the buffer (if any) is transmitted and our benefit of it is equal to its intrinsic value minus the time it spent in the buffer. The objective is to maximize the total benefit. From a worst-case perspective, Fiat et al. [14] gave a threshold algorithm with a competitive ratio equal to the golden ratio φ ≈ 1.618. Due to the insensitivity of the algorithms towards the input, it was conjectured that this competitive ratio is too pessimistic for packet sequences occurring in practice.

In this paper, we treat this conjecture from an analytical and experimental point of view. In the analytical part, we assume Poisson arrivals and compute a threshold for this algorithm depending on the arrival rate λ and the value R of the packets. This also yields bounds on the (expected) competitive ratio of the algorithm. We discover the phenomenon that the ratio converges to one if R grows or λ moves away from one. Thus (for fixed R) we have that the largest competitive ratios occur for λ= 1. In that case, the bound is essentially \(R / (R - \sqrt{R})\) and gives values smaller than φ for R ≥ 8.

In a second, experimental, part of our study, we compared the competitive ratios achieved by the two threshold algorithms on actual network traffic with our theoretical prediction (which assumes Poisson arrivals). It turns out that the prediction and the measured ratios for our threshold are consistent, where the prediction even tends to be pessimistic. Furthermore, the measured ratios with our threshold where substantially smaller than φ and even almost everywhere below the ratios achieved with the threshold of [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Mansour, Y., Rajagopolan, S., Rosen, A.: Competitive queue policies for differentiated services. In: Proc. INFOCOM, pp. 431–440 (2000)

    Google Scholar 

  2. Albers, S., Jacobs, T.: An experimental study of new and known online packet buffering algorithms. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 754–765. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Albers, S., Schmidt, M.: On the performance of greedy algorithms in packet buffering. In: Proc. 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 35–44 (2004)

    Google Scholar 

  4. Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing policies for QoS switches. In: Proc. of 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 761–770 (2003)

    Google Scholar 

  5. Azar, Y., Richter, Y.: Management of multi-queue switches in QoS networks. In: Proc. 35th ACM Symposium on Theory of Computing (STOC 2003), pp. 82–89 (2003)

    Google Scholar 

  6. Barry, D.A., Parlange, J.-Y., Li, L., Prommer, H., Cunningham, C.J., Stagnitti, F.: Analytical approximations for real values of the Lambert W-function. Mathematics and Computers in Simulation 53, 95–103 (2000)

    Article  MathSciNet  Google Scholar 

  7. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, Cambridge

    Google Scholar 

  8. Brun, O., Garcia, J.: Analytical solution of finite capacity M/D/1 queues. J. Appl. Prob. 37, 1092–1098 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Cao, J., Ramanan, K.: A Poisson limit for buffer overflow probabilities. In: IEEE Infocom (2002)

    Google Scholar 

  10. Chin, F.Y.L., Fung, S.P.Y.: Online scheduling with partial job values: Does timesharing or randomization help? Algorithmica 37(3), 149–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Computational Maths. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Englert, M., Westermann, M.: Considering suppressed packets improves buffer management in qos switches. In: Proc. of 18th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2007)

    Google Scholar 

  13. Experimental results, http://www.informatik.uni-freiburg.de/~souza

  14. Fiat, A., Mansour, Y., Nadav, U.: Competitive Queue Management for Latency Sensitive Packets. In: Proc. of 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 228–237 (2008)

    Google Scholar 

  15. Gelenbe, E., Pujolle, G.: Introduction to queueing networks. John Wiley, cop., Chichester (1998)

    MATH  Google Scholar 

  16. Internet Traffic Archive, http://ita.ee.lbl.gov/

  17. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko, M.: Buffer overflow management in QoS switches. SIAM J. on Computing 33(3), 563–583 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the Self-Similar Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on Networking 2(1), 1–15 (1994)

    Article  Google Scholar 

  19. Li, F., Sethuraman, J., Stein, C.: An optimal online algorithm for packet scheduling with agreeable deadlines. In: Proc. of 16th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2005)

    Google Scholar 

  20. Li, Y., Qiu, H., Gu, X., Lan, J., Yang, J.: Design and Buffer Sizing of TCAM-Based Pipelined Forwarding Engines. In: Proc. of the 21st International Conference on Advanced Networking and Applications, pp. 769–776 (2007)

    Google Scholar 

  21. Lotker, Z., Patt-Shamir, B.: Nearly optimal FIFO buffer management for DiffServ. In: Proc. 21st ACM Symposium on Principles of Distributed Computing, pp. 134–143 (2002)

    Google Scholar 

  22. Nadav, U.: Personnal communication (2007)

    Google Scholar 

  23. Naor, P.: The regulation of queue size by levying tolls. Econometrica 37(1), 15–24 (1969)

    Article  MATH  Google Scholar 

  24. Paxson, V., Floyd, S.: Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)

    Article  Google Scholar 

  25. Raina, G., Wischik, D.: Buffer sizes for large multiplexers: TCP queueing theory and instability analysis. In: EuroNGI (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Al-Bawani, K., Souza, A. (2009). Competitive Buffer Management with Stochastic Packet Arrivals. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02011-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02010-0

  • Online ISBN: 978-3-642-02011-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics