Skip to main content

Influence of Tree Topology Restrictions on the Complexity of Haplotyping with Missing Data

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5532))

Abstract

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes from genotype data. One fast haplotyping method is based on an evolutionary model where a perfect phylogenetic tree is sought that explains the observed data. Unfortunately, when data entries are missing as is often the case in laboratory data, the resulting incomplete perfect phylogeny haplotyping problem ipph is NP-complete and no theoretical results are known concerning its approximability, fixed-parameter tractability, or exact algorithms for it. Even radically simplified versions, such as the restriction to phylogenetic trees consisting of just two directed paths from a given root, are still NP-complete; but here a fixed-parameter algorithm is known. We show that such drastic and ad hoc simplifications are not necessary to make ipph fixed-parameter tractable: We present the first theoretical analysis of an algorithm, which we develop in the course of the paper, that works for arbitrary instances of ipph. On the negative side we show that restricting the topology of perfect phylogenies does not always reduce the computational complexity: while the incomplete directed perfect phylogeny problem is well-known to be solvable in polynomial time, we show that the same problem restricted to path topologies is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: A direct approach. J. Comput. Biol. 10(3–4), 323–340 (2003)

    Article  Google Scholar 

  2. Benham, C.J., Kannan, S., Paterson, M., Warnow, T.: Hen’s teeth and whale’s feet: Generalized characters and their compatibility. J. Comput. Biol. 2(4), 515–525 (1995)

    Article  Google Scholar 

  3. Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype problem. Algorithmica 48(3), 267–285 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid populations. J. of Mol. Biol. and Evol. 7(2), 111–122 (1990)

    Google Scholar 

  5. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem. J. Comput. Biol. 13(2), 522–553 (2006)

    Article  MathSciNet  Google Scholar 

  6. Elberfeld, M., Schnoor, I., Tantau, T.: Influence of tree topology restrictions on the complexity of haplotyping with missing data. Tech. Rep. SIIM-TR-A-08-05, Universität zu Lübeck (2008)

    Google Scholar 

  7. Elberfeld, M., Tantau, T.: Computational complexity of perfect-phylogeny-related haplotyping problems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 299–310. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Eskin, E., Halperin, E., Karp, R.M.: Efficient reconstruction of haplotype structure via perfect phylogeny. J. of Bioinform. and Comput. Biol. 1(1), 1–20 (2003)

    Article  Google Scholar 

  9. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. and Evol. 12(5), 921–927 (1995)

    Google Scholar 

  10. Gramm, J., Hartman, T., Nierhoff, T., Sharan, R., Tantau, T.: On the complexity of SNP block partitioning under the perfect phylogeny model. Discrete Math. (2008) (to appear), doi:010.1016/j.disc.2008.04.002

    Google Scholar 

  11. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via perfect path phylogenies. Discrete and Appl. Math. 155(6-7), 788–805 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gusfield, D.: Inference of haplotypes from samples of diploid populations: Complexity and algorithms. J. Comput. Biol. 8(3), 305–323 (2001)

    Article  Google Scholar 

  13. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In: Proc. RECOMB 2002, pp. 166–175. ACM Press, New York (2002)

    Chapter  Google Scholar 

  14. Halperin, E., Karp, R.M.: Perfect phylogeny and haplotype assignment. In: Proc. RECOMB 2002, pp. 10–19. ACM Press, New York (2004)

    Google Scholar 

  15. Kimmel, G., Shamir, R.: The incomplete perfect phylogeny haplotype problem. J. Bioinform. and Comput. Biol. 3(2), 359–384 (2005)

    Article  Google Scholar 

  16. Liu, Y., Zhang, C.-Q.: A linear solution for haplotype perfect phylogeny problem. In: Proc. Int. Conf. Adv. in Bioinform. and Appl., pp. 173–184. World Scientific, Singapore (2005)

    Chapter  Google Scholar 

  17. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. SIAM J. Comput. 33(3), 590–607 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vijaya Satya, R., Mukherjee, A.: An optimal algorithm for perfect phylogeny haplotyping. J. Comput. Biol. 13(4), 897–928 (2006)

    Article  MathSciNet  Google Scholar 

  19. Vijaya Satya, R., Mukherjee, A.: The undirected incomplete perfect phylogeny problem. IEEE/ACM T. Comput. Biol. and Bioinform. 5(4), 618–629 (2008)

    Article  Google Scholar 

  20. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9(1), 91–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elberfeld, M., Schnoor, I., Tantau, T. (2009). Influence of Tree Topology Restrictions on the Complexity of Haplotyping with Missing Data. In: Chen, J., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2009. Lecture Notes in Computer Science, vol 5532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02017-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02017-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02016-2

  • Online ISBN: 978-3-642-02017-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics