Skip to main content

On Spanners of Geometric Graphs

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5532))

  • 578 Accesses

Abstract

We consider the problem of computing spanners of Euclidean graphs embedded in the 2-dimensional Euclidean plane. We present an \(O(n\lg{n})\) time algorithm that computes a spanner of a Euclidean graph that is of bounded degree and plane, where n is the number of points in the graph. Both upper bounds on the degree and the stretch factor significantly improve the previous bounds. We extend this algorithm to compute a bounded-degree plane lightweight spanner of a Euclidean graph.

Our results rely on elegant structural and geometric results that we develop. Moreover, our results can be extended to Unit Disk graphs under the local distributed model of computation.

The results in this paper are obtained jointly with Ljubmoir Perković and G. Xia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 234–246. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42(3-4), 249–264 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4), 937–951 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  6. Bose, P., Smid, M., Xu, D.: Diamond triangulations contain spanners of bounded degree. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 173–182. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Chew, P.: There are planar graphs almost as good as the complete graph. Journal of Computers and System Sciences 39(2), 205–219 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-dimensional euclidean space. In: Proceedings of SoCG, pp. 53–62 (1993)

    Google Scholar 

  9. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse euclidean spanners. In: Proceedings of SoCG, pp. 132–139 (1994)

    Google Scholar 

  10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  11. Dobkin, D., Friedman, S., Supowit, K.: Delaunay graphs are almost as good as complete graphs. Discrete Computational Geometry 5(4), 399–407 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kanj, I., Perković, L.: On geometric spanners of euclidean and unit disk graphs. In: Proceedings of STACS (2008)

    Google Scholar 

  14. Keil, J., Gutwin, C.: Classes of graphs which approximate the complete Euclidean graph. Discrete & Computational Geometry 7, 13–28 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proceeding of CCCG, pp. 51–54 (1999)

    Google Scholar 

  16. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3), 251–256 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, X.-Y., Calinescu, G., Wan, P.-J., Wang, Y.: Localized delaunay triangulation with application in Ad Hoc wireless networks. IEEE Trans. on Parallel and Dist. Systems. 14(10), 1035–1047 (2003)

    Article  Google Scholar 

  18. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  19. Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner for wireless ad hoc networks. Mobile Networks and Applications 11(2), 161–175 (2006)

    Article  Google Scholar 

  20. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanj, I.A. (2009). On Spanners of Geometric Graphs. In: Chen, J., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2009. Lecture Notes in Computer Science, vol 5532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02017-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02017-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02016-2

  • Online ISBN: 978-3-642-02017-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics