Skip to main content

Improved Algorithms for the Gene Team Problem

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5573))

  • 1196 Accesses

Abstract

A gene team is a set of genes that appear in two or more species, possibly in a different order yet with the distance between adjacent genes in the team for each chromosome always no more than a certain threshold. The focus of this paper is the problem of finding gene teams of two chromosomes. Béal et al. [1] had an O(nlog2 n)-time algorithm for this problem. In this paper, two O(nlogd)-time algorithms are proposed, where d ≤ n is the number of gene teams. The proposed algorithms are obtained by modifying Béal et al.’s algorithm, using two different approaches. Béal et al.’s algorithm can be extended to find the gene teams of k chromosomes in O(knlog2 n) time. Our improved algorithms can be extended to find the gene teams of k chromosomes in O(knlogd) time.

This research is supported by the National Science Council of the Republic of China under grant NSC-97-2221-E-007-053-MY3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Béal, M.-P., Bergeron, A., Corteel, S., Raffinot, M.: An Algorithmic View of Gene Teams. Theor. Comput. Sci. 320(2-3), 395–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Coulon, F., Raffinot, M.: Fast Algorithms for identifying maximal common connected sets of interval graphs. Discrete Applied Mathematics 154(12), 1709–1721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dandekar, T., Snel, B., Huynen, M., Bork, P.: Conservation of Gene Order: a Fingerprint for Proteins that Physically Interact. Trends Biochem. Sci. 23, 324–328 (1998)

    Article  Google Scholar 

  5. Didier, G.: Common Intervals of Two Sequences. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 17–24. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Ermolaeva, M.D., White, O., Salzberg, S.L.: Prediction of Operons in Microbial Genomes. Nucleic Acids Res. 29(5), 1216–1221 (2001)

    Article  Google Scholar 

  7. Gai, A.-T., Habib, M., Paul, C., Raffinot, M.: Identifying Common Connected Components of Graphs. Technical Report, LIRMM-03016 (2003)

    Google Scholar 

  8. He, X., Goldwasser, M.H.: Identifying Conserved Gene Clusters in the Presence of Homology Families. Journal of Computational Biology 12(6), 638–656 (2005)

    Article  Google Scholar 

  9. Heber, S., Stoye, J.: Finding all Common Intervals of k Permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Lathe III, W.C., Snel, B., Bork, P.: Gene Context Conservation of a Higher Order than Operons. Trends Biochem. Sci. 25, 474–479 (2000)

    Article  Google Scholar 

  11. Lawrence, J.: Selfish Operons: the Evolutionary Impact of Gene Clustering in Prokaryotes and Eukaryotes. Curr. Opin. Genet. Dev. 9(6), 642–648 (1999)

    Article  Google Scholar 

  12. Luc, N., Risler, J.-L., Bergeron, A., Raffinot, M.: Gene Teams: a New Formalization of Gene Clusters for Comparative Genomics. Computational Biology and Chemistry 27(1), 59–67 (2003)

    Article  Google Scholar 

  13. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The Use of Gene Clusters to Infer Functional Coupling. Proc. Natl. Acad. Sci. USA 96(6), 2896–2901 (1999)

    Article  Google Scholar 

  14. Schmidt, T., Stoye, J.: Quadratic Time Algorithms for Finding Common Intervals in Two and More Sequences. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 347–358. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Snel, B., Bork, P., Huynen, M.A.: The Identification of Functional Modules from the Enomic Association of Genes. Proc. Natl. Acad. Sci. USA 99(9), 5890–5895 (2002)

    Article  Google Scholar 

  16. Uno, T., Yagiura, M.: Fast Algorithms to Enumerate all Common Intervals of Two Permutations. Algorithmica 26(2), 290–309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, BF., Liu, SJ., Lin, CH. (2009). Improved Algorithms for the Gene Team Problem. In: Du, DZ., Hu, X., Pardalos, P.M. (eds) Combinatorial Optimization and Applications. COCOA 2009. Lecture Notes in Computer Science, vol 5573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02026-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02026-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02025-4

  • Online ISBN: 978-3-642-02026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics