Skip to main content

Generalized Russian Cards Problem

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5573))

Abstract

This paper investigates Russian Cards problem for the purpose of unconditional secured communication. First, a picking rule and deleting rule as well as safe communication condition are given to deal with the problem with 3 players and 7 cards. Further, the problem is generalized to tackle n players and n(n − 1) + 1 cards. A new picking rule for constructing the announcement is presented, and a new deleting rule for players to determine each other’s cards is formalized. In addition, the safe communication condition is also proved.

This research is supported by NSFC Grant No. 60433010 and 60873018, DPRP No.51315050105, SRFDP 200807010012, and SKLSE 20080713.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., van Ditmarsch, H.P., Handley, C.C.: Safe Communication for Card Players by Combinatorial Designs for Two-Step Protocols. Australasian Journal of Combinatorics 33, 33–46 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Cyriac, A., Krishnan, K.M.: Lower Bound for the Communication Complexity of the Russian Cards Problem. CoRR, vol. abs/0805.1974 (2008), www.arxiv.org

  3. Duan, Z., Koutny, M.: A Framed Temporal Logic Programming Language. J. Comput. Sci. Technol. 19, 333–344 (2004)

    MathSciNet  Google Scholar 

  4. Duan, Z., Tian, C., Li, Z.: A Decision Procedure for Propositional Projection Temporal Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, Z., Yang, X., Koutny, M.: Frammed Temporal Logic Programming. Science of Computer Programming 70(1), 31–61 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischer, M.J., Wright, R.N.: Bounds on Secret Key Exchange using a Random Deal of Cards. Journal of Cryptology 9(2), 71–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2003)

    Google Scholar 

  8. Koichi, K., Takaaki, M., Takao, N.: Necessary and Sufficient Numbers of Cards for the Transformation Protocol. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 92–101. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Makarychev, K.: Logicheskie Voprosy Peredachi Informacii (Logical Issues of Information Transmission). Master’s Thesis, Moscow State University, Diplomnaja rabota, part 1 (2001)

    Google Scholar 

  10. Ramanujam, R., Suresh, S.P.: Information based Reasoning about Security Protocols. Electronic Notes in Theoretical Computer Science 55(1), 89–104 (2001)

    MATH  Google Scholar 

  11. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Roehling, S.: Cards and Cryptography. Report in Partial Fulfilment of MSc in Computer Science. University of Otago (2005)

    Google Scholar 

  13. Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic Based on SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 246–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. van Ditmarsch, H.P.: The Russian Cards Problem. Studia Logica 75, 31–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. van Ditmarsch, H.P.: The Case of the Hidden Hand. Journal of Applied Non-Classical Logics 15(4), 437–452 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Public Announcements and Belief Expansion. Advances in Modal Logic 5, 335–346 (2005)

    MathSciNet  MATH  Google Scholar 

  17. van Ditmarsch, H.P., van der Hoek, W., van der Meyden, R., Ruan, J.: Model Checking Russian Cards. Electronic Notes in Theoretical Computer Science 149(2), 105–123 (2006)

    Article  MATH  Google Scholar 

  18. Vasilenko, O.: Number-Theoretic Algorithms in Cryptography (Translations of Mathematical Monographs). American Mathematical Society, Boston (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duan, Z., Yang, C. (2009). Generalized Russian Cards Problem. In: Du, DZ., Hu, X., Pardalos, P.M. (eds) Combinatorial Optimization and Applications. COCOA 2009. Lecture Notes in Computer Science, vol 5573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02026-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02026-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02025-4

  • Online ISBN: 978-3-642-02026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics