Skip to main content

Properly Coloured Cycles and Paths: Results and Open Problems

  • Chapter
Graph Theory, Computational Intelligence and Thought

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5420))

  • 1122 Accesses

Abstract

In this paper, we consider a number of results and six conjectures on properly coloured (PC) paths and cycles in edge-coloured multigraphs. We overview some known results and prove new ones. In particular, we consider a family of transformations of an edge-coloured multigraph G into an ordinary graph that allow us to check the existence of PC cycles and PC (s,t)-paths in G and, if they exist, to find shortest ones among them. We raise a problem of finding the optimal transformation and consider a possible solution to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abouelaoualim, A., Das, K.C., Fernandez de la Vega, W., Manoussakis, Y., Martinhon, C.A., Saad, R.: Cycles and paths in edge-colored graphs with given degrees (2007) (manuscript)

    Google Scholar 

  2. Abouelaoualim, A., Das, K.C., Faria, L., Manoussakis, Y., Martinhon, C.A., Saad, R.: Paths and Trails in Edge-Colored Graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 723–735. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Alon, N., Gutin, G.: Properly colored Hamilton cycles in edge colored complete graphs. Random Struct. & Alg. 11, 179–186 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multigraphs: a survey. Discrete Math. 165-166, 39–60 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bang-Jensen, J., Gutin, G.: Alternating cycles and trails in 2-edge-coloured multigraphs. Discrete Math. 188, 61–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer, London (2000), www.cs.rhul.ac.uk/books/dbook/

    MATH  Google Scholar 

  7. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, London (in preparation)

    Google Scholar 

  8. Benkouar, A., Manoussakis, Y., Paschos, V., Saad, R.: On the Complexity of Some Hamiltonian and Eulerian Problems in Edge-colored Complete Graphs. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 190–198. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  9. Bollobás, B., ErdÅ‘s, P.: Alternating Hamiltonian cycles. Israel J. Math. 23, 126–131 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dorninger, D.: On permultations of chromesomes, Contributions to General Algebra, vol. 5, pp. 95–103. Teubner-Verlag, Stuttgart (1987)

    Google Scholar 

  11. Dorninger, D.: Hamiltonian circuits determining the order of chromosomes. Discrete Appl. Math. 50, 159–168 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, J., Giesen, H.-E., Guo, Y., Gutin, G., Jensen, T., Rafiey, A.: Characterization of edge-colored complete graph s with properly colored Hamilton paths. J. Graph Theory 53, 333–346 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Proc. SODA 1990, pp. 434–443 (1990)

    Google Scholar 

  14. Grossman, J.W., Häggkvist, R.: Alternating cycles in edge-partitioned graphs. J. Combin. Theory Ser. B 34, 77–81 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutin, G.: Note on edge-colored graphs and digraphs without properly colored cycles. Austral. J. Combin. (to appear)

    Google Scholar 

  16. Manoussakis, Y., Spyratos, M., Tuza, Z., Voigt, M.: Minimal colorings for properly colored subgraphs. Graphs & Combin. 12, 345–360 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Saad, R.: Finding a longest alternating cycle in a 2-edge-coloured complete graph is in RP. Combin. Prob. & Comput. 5, 297–306 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shearer, J.: A property of the colored complete graph. Discrete Math. 25, 175–178 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discrete Appl. Math. 126, 261–273 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tarjan, R.E.: Data structures and network algorithms. SIAM, Philadelphia (1983)

    Book  MATH  Google Scholar 

  21. Yeo, A.: A note on alternating cycles in edge-coloured graphs. J. Combin. Theory Ser. B 69, 222–225 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gutin, G., Jung Kim, E. (2009). Properly Coloured Cycles and Paths: Results and Open Problems. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds) Graph Theory, Computational Intelligence and Thought. Lecture Notes in Computer Science, vol 5420. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02029-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02029-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02028-5

  • Online ISBN: 978-3-642-02029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics