Abstract
In this paper, we consider a number of results and six conjectures on properly coloured (PC) paths and cycles in edge-coloured multigraphs. We overview some known results and prove new ones. In particular, we consider a family of transformations of an edge-coloured multigraph G into an ordinary graph that allow us to check the existence of PC cycles and PC (s,t)-paths in G and, if they exist, to find shortest ones among them. We raise a problem of finding the optimal transformation and consider a possible solution to the problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abouelaoualim, A., Das, K.C., Fernandez de la Vega, W., Manoussakis, Y., Martinhon, C.A., Saad, R.: Cycles and paths in edge-colored graphs with given degrees (2007) (manuscript)
Abouelaoualim, A., Das, K.C., Faria, L., Manoussakis, Y., Martinhon, C.A., Saad, R.: Paths and Trails in Edge-Colored Graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 723–735. Springer, Heidelberg (2008)
Alon, N., Gutin, G.: Properly colored Hamilton cycles in edge colored complete graphs. Random Struct. & Alg. 11, 179–186 (1997)
Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multigraphs: a survey. Discrete Math. 165-166, 39–60 (1997)
Bang-Jensen, J., Gutin, G.: Alternating cycles and trails in 2-edge-coloured multigraphs. Discrete Math. 188, 61–72 (1998)
Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer, London (2000), www.cs.rhul.ac.uk/books/dbook/
Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, London (in preparation)
Benkouar, A., Manoussakis, Y., Paschos, V., Saad, R.: On the Complexity of Some Hamiltonian and Eulerian Problems in Edge-colored Complete Graphs. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 190–198. Springer, Heidelberg (1991)
Bollobás, B., Erdős, P.: Alternating Hamiltonian cycles. Israel J. Math. 23, 126–131 (1976)
Dorninger, D.: On permultations of chromesomes, Contributions to General Algebra, vol. 5, pp. 95–103. Teubner-Verlag, Stuttgart (1987)
Dorninger, D.: Hamiltonian circuits determining the order of chromosomes. Discrete Appl. Math. 50, 159–168 (1994)
Feng, J., Giesen, H.-E., Guo, Y., Gutin, G., Jensen, T., Rafiey, A.: Characterization of edge-colored complete graph s with properly colored Hamilton paths. J. Graph Theory 53, 333–346 (2006)
Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Proc. SODA 1990, pp. 434–443 (1990)
Grossman, J.W., Häggkvist, R.: Alternating cycles in edge-partitioned graphs. J. Combin. Theory Ser. B 34, 77–81 (1983)
Gutin, G.: Note on edge-colored graphs and digraphs without properly colored cycles. Austral. J. Combin. (to appear)
Manoussakis, Y., Spyratos, M., Tuza, Z., Voigt, M.: Minimal colorings for properly colored subgraphs. Graphs & Combin. 12, 345–360 (1996)
Saad, R.: Finding a longest alternating cycle in a 2-edge-coloured complete graph is in RP. Combin. Prob. & Comput. 5, 297–306 (1996)
Shearer, J.: A property of the colored complete graph. Discrete Math. 25, 175–178 (1979)
Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discrete Appl. Math. 126, 261–273 (2003)
Tarjan, R.E.: Data structures and network algorithms. SIAM, Philadelphia (1983)
Yeo, A.: A note on alternating cycles in edge-coloured graphs. J. Combin. Theory Ser. B 69, 222–225 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gutin, G., Jung Kim, E. (2009). Properly Coloured Cycles and Paths: Results and Open Problems. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds) Graph Theory, Computational Intelligence and Thought. Lecture Notes in Computer Science, vol 5420. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02029-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-02029-2_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02028-5
Online ISBN: 978-3-642-02029-2
eBook Packages: Computer ScienceComputer Science (R0)