
Aliasing, Confinement, and Ownership in
Object-Oriented Programming

IWACO Workshop Report

Dave Clarke1, Sophia Drossopoulou2, Peter Müller3, James Noble4, and
Tobias Wrigstad5

1 Katholieke Universiteit Leuven, Belgium, Dave.Clarke@cs.kuleuven.be
2 Imperial College, London, UK, sd@doc.ic.ac.uk

3 ETH Zurich, Switzerland, peter.mueller@inf.ethz.ch
4 Victoria University of Wellington, New Zealand, kjx@mcs.vuw.ac.uk

5 Purdue University, USA, wrigstad@cs.purdue.edu

Abstract The power of objects lies in the flexibility of their intercon-
nection structure. But this flexibility comes at a cost. Because an object
can be modified via any alias, object-oriented programs are hard to un-
derstand, maintain, and analyze. Aliasing makes objects depend on their
environment in unpredictable ways, breaking the encapsulation necessary
for reliable software components, making it difficult to reason about and
optimize programs, obscuring the flow of information between objects,
and introducing security problems.
Aliasing is a fundamental difficulty, but we accept its presence. Instead
we seek techniques for describing, reasoning about, restricting, analyzing,
and preventing the connections between objects and/or the flow of infor-
mation between them. Promising approaches to these problems are ba-
sed on ownership, confinement, information flow, sharing control, escape
analysis, argument independence, read-only references, effects systems,
and access control mechanisms.

1 Introduction

The aim of the IWACO workshop was to address the question how to manage
interconnected object structures in the presence of aliasing. In, particular the
following issues were covered:

– models, type and other formal systems, programming language, separation
logic, mechanisms, analysis and design techniques, patterns, tools and no-
tations for expressing object ownership, aliasing, confinement, uniqueness,
and/or information flow;

– optimization techniques, analysis algorithms, libraries, applications, tools,
and novel approaches exploiting object ownership, aliasing, confinement, uni-
queness, and/or information flow;

– empirical studies of programs or experience reports from programming sys-
tems designed with these issues in mind;

– novel applications of aliasing management techniques such as ownership
types, ownership domains, confined types, region types, and uniqueness.



History. IWACO 2008 was the fourth ECOOP workshop focusing on aliasing.
The previous workshops were IWACO 2007 [11], IWACO 2003 [10], and the
Intercontinental Workshop on Aliasing in Object-Oriented Systems (IWAOOS)
in 1999. The issues addressed in this workshop were first brought into focus with
the Geneva Convention on the Treatment of Object Aliasing [19].

Program. The workshop provided a forum for two invited talks, seven presen-
tations of submitted papers (including three position papers), four tool demos,
and ample discussions. It was organized in four sessions, which we summarize in
the following four sections.

2 Session 1: Invited Talk

The presentation of our first invited speaker, Jonathan Aldrich from Carnegie
Mellon University, was entitled “Define, don’t Confine”. It identified three major
challenges that need to be addressed in order to bring alias control into practice.

First, the community has to identify applications where the benefit of making
program structure explicit has a significant and immediate benefit. Two promi-
sing candidates are concurrency and verification. For both applications, it will
be necessary to make the annotations lightweight (possibly through inference)
and to improve the expressiveness in order to cover common program styles and
idioms.

Second, the community has to increase the adoptability of alias control by
reducing the annotation burden through inference and by providing support for
existing languages and programs.

Third, the community has to increase the applicability of alias control to be
able to handle more programs. Aldrich’s position here is that the community has
focused too much on restricting aliasing rather than documenting the aliasing in
programs and using this information for reasoning. He showed various examples
that support his position.

To the great satisfaction of the IWACO crowd, Aldrich’s final slide was entit-
led “The Future of Alias Control is Bright”—provided that the three challenges
will be addressed successfully.

3 Session 2: Ownership

Two of the open challenges for type systems expressing ownership and related
properties are (1) determining what the type system should express and how it
should express it, and (2) type inference. The four talks in the second session
addressed one or both of these issues.

Expressiveness A lot of research has gone into determining how to best express
information such as ownership and immutability. As suggested in Aldrich’s key-
note, there needs to be shift more towards addressing what needs to be expressed,



as directly extending existing type systems tends to intermingle the policy with
the mechanism of the type system. Nonetheless, work on improving the expres-
siveness of individual type systems still produces useful technical machinery.

Yu David Liu presented Pedigree Types, joint work with Scott Smith. Pedigree
types aim to obtain the benefits of owner parameterization, as in in Ownership
Types [13], with the simple syntactic convenience of Universe Types [15].

Parameters are never explicitly stated on classes, and instead type inference is
used to fill in types and class parameters omitted by the programmer. Ownership
is described by adapting metaphors from human genealogy, which could aid
programmers in understanding and expressing the ownership structure in their
programs. Owners take the general form parenta.childb, describing a traversal
up the ownership tree, and then down again, under the constraints that a ≥ 0
and b ∈ {0, 1}. Existing owners can be described in a natural manner rep =
child, self = parent0.child0, sibling = peer = owner = parent.child,
along with new ones, such as parent, grandparent = parent2, and uncle =
parent2.child1. In principle, the types can also express owners not available and
expressible in the other systems, such as whenever the child’s index is greater
than 1 an encapsulation violation occurs. Classes are (implicitly) parameterized
by such indices, allowing classes to be used in different places with different
pedigrees within an ownership tree. A natural notion of pedigree subsumption
also exists, permitting the relationship self ≤ sibling, parent ≤ uncle =
parent2.child1, and, more generally, parenta.childb ≤ parenta+1.childb+1.
The type system presented in the paper is sound and decidable. It can express
deep ownership and has a natural runtime representation. Various extensions to
the system are also described in the paper, including opting-out.

Alex Potanin presented the position paper Towards Unifying Immutability
and Ownership, describing joint work with Paley Li, James Noble, and Lindsay
Groves. The paper called for the unification of immutability and ownership in
order to improve the expressiveness of each notion. The goal is not to merely put
the two notions together in the same language, but to really unify them. The
paper emphasized the need to avoid observational exposure [6], which requires
that mutations to an object are not observed by other objects—this is essentially
the difference between immutability and read-only. The paper presented three
possible ways of unifying the two mechanisms, leveraging the Generic Ownership
approach [29]. The three approaches were:

– direct combination of generic ownership and generic immutability—have se-
parate parameter spaces representing ownership information and immutabi-
lity information;

– generic immutability and ownership—combine the ‘type’ hierarchies repre-
senting ownership and immutability into one, thereby requiring only a single
parameter space to represent them; and

– generic access rights for immutability and ownership—define, more or less,
a language of access rights, along the lines of Capabilities for Sharing [7].



Some debate arose suggesting that a fourth possibility, namely, annotating the
owners with write/read-only/immutable access modes, as in Joe3 [26], though
this needed external uniqueness [12] to work.

Nick Cameron presented the position paper Variant Ownership with Exis-
tential Types, joint work with Sophia Drossopoulou. The presentation described
various advantages and possibilities offered by existential types. The type system,
called Jo∃, outlined ideas from Java’s wildcards in the context of Generic Owner-
ship, to gain expressiveness yet remain compatible with Java. Java’s wildcards
soften the subtyping relation by allowing variance in a generic type’s parame-
ters. The main research issue with this work is whether adding existential types
opens the door too far. That is, if existential types are used to forget ownership
information, will the constraints imposed by ownership and the benefits thereby
gained be lost? It was conjectured that type (ownership) bounds could be used
to retain the information required to enforce such constraints, though further
research is required to determine whether this is the case. An additional open
question is that of decidability of the type system.

Type Inference. Developing type inference systems for type systems expressing
ownership is crucial for their adoption, as they are required to add annotations
to library code and to reduce the volume of annotations in programmers’ code.
Two papers described various aspects of the inference process.

Yu David Liu’s work reduces type inference to the problem of finding suitable
parent and child indices; thus, type inference can be expressed as a constraint
problem over integers. With previous attempts at type inference in parameterized
ownership type systems, the number of parameters can grow in an unbounded
manner. This was handled by unifying different possible parameters whenever a
recursive occurrence of a class was encountered.

Ana Milanova’s presentation of Static Inference of Universe Types described
an algorithm for inferring Universe Types for Java programs. This work extends
her past research on inferring Ownership Types for Java programs [23]. The al-
gorithm was based on a points-to analysis and performed the following steps:
construct static object graph; compute dominance boundary of each object; as-
sign types to object graph edges; and assign types to fields and variables. The
approach aims to produce a deep tree, but whenever a write upwards in the tree
occurs, it forces a shallower ownership structure. The main challenge was that
there were many possible type assignments, and no precise notion of principal
assignment. Promising preliminary results were given.

An interesting open question is whether the two approaches can be combined.
That is, can the constraint-based approach be applied to Universe Types?

4 Session 3: Concurrency and Ownership Demos

Concurrency. Nicholas Matsakis presented joint work with Thomas Gross. They
describe a flow sensitive type and effects system that requires methods to declare



the partitions of the heap that are read or written, resp. Effect agreements can be
used to limit the conditions in which a method can be called. With this system,
multi-threaded programs follow safe conventions that guarantee the program is
free of data races.

A partition is a compile-time abstraction that identifies a distinct set of loca-
tions (object-field pairs) in the heap. Partitions are similar to data groups [21],
but have scope, which can be exploited to achieve, for example, thread-local
state. Methods are annotated with five kinds of effects that they have on parti-
tions: read, write, atomic read, atomic write, and intersection. Atomic read/write
indicates that the partition was accessed from within a block guaranteed to exe-
cute atomically. An intersection effect records that two partitions were made to
intersect: this needs to be made explicit and trackable by analysis because when
two partitions intersect, data that is added to one must also be considered added
to the other.

In addition to being annotated with effects, a method may also be annotated
with a contract, known as an effect agreement, that constrains what can happen
before the method is called or after it returns. Effect agreements are always
in the negative, they describe what must not have occurred prior to invocation
(pre agreements), and what must not happen after the method has returned (par
agreements). A pre agreement is generally used to require that certain partitions
have not been intersected and are thus known to be disjoint. A par agreement
is used to indicate that the method has started a new thread and that certain
effects should not happen in parallel with that thread’s execution.

The discussion of this presentation focused on the relation with Dave Cun-
ningham’s work (to be presented at FTfJP the next day) as well as on some
possible variants of the proposed annotations, as e.g., in Java wildcards.

John Boyland argued that Java’s volatile fields are difficult to reason about
in a strictly linear fashion as found in concurrent separation logic [8] or fractional
permissions [5]. In these approaches, accesses to volatile fields can be modeled
using atomic blocks and auxiliary state, which Boyland finds unsatisfying be-
cause such a description is rather low-level. Instead, volatile fields are more easily
handled by using non-linear concepts such as immutability and ownership [9],
where they can be treated as loop holes, that is, accesses to volatile fields are not
checked by the system. Boyland argued that a combination of linear and non-
linear reasoning is highly desirable. He encourages research in how to formalize
ownership as a nonlinear subsystem in a mostly linear logic.

Ownership Demos. In the demo section of this session, Alex Potanin demons-
trated the type checkers for Ownership Generic Java (OGJ) [29] and Immutable
Generic Java (IGJ) [31]. Both systems build on Java generics to check the ad-
ditional properties. Peter Müller presented some of the ETH tools for Universe
Types, namely the type checkers for Generic Universe Types (GUT) [14] and
Universe Types with Transfer (UTT) [24]. Both Universe checkers are imple-
mented in the compiler for the Java Modeling Language (JML) [20].



5 Session 4: Verification

The final session began with a second invited talk from Dino Distefano, des-
cribing his jStar system, based on a paper (with Matthew Parkinson) that he
will present at OOPSLA later this year [17]. jStar’s key contribution is that it is
based on separation logic [28], rather than ownership, applying techniques from
earlier separation logic based checkers [2,16] to object-oriented programs.

Being based on separation logic from the outset gives jStar a number of
immediate advantages over ownership-based approaches such as JML [20] and
Spec] [22]. First, jStar does not impose any restrictions on the topology or use
of pointers in object-oriented programs: no “owners as dominators”, “owners
as modifiers”, or “owners cover invariants” discipline is required in program
design. Second, because of this lack of an ownership discipline, programmers do
not have to annotate their programs to describe how particular classes use that
disciple. Third, the only annotations (method pre- and post- conditions) that
are required are much briefer than in ownership based systems, because a single
annotation language (separation logic) covers both the propositional content of
assertions and the framing required to deal with heap storage and delineate
potential aliasing. Fourth, using only stand-alone predicates and eschewing class
invariants means that many of the complexities of whether and when a class
is in a “valid state” can be replaced by instantaneously asserting particular
predicates [27]. On the other hand, of course, these advantages come at cost:
principally, that programmers must write assertions in separation logics, rather
than traditional computation logics.

The other advance embodied in jStar is the use of abductive reasoning for abs-
tract reasoning, particularly, it seems, regarding heap topologies. jStar includes
a set of inference rules that embody abstraction functions, taking lower level
heap states (e.g., sequences of cons nodes) up to more abstract data structure
(e.g., a list spine and its contents). This means that—compared with other sys-
tems, in some sense jStar performs something similar to “ownership inference”
as well as program proving based on the inferred heap properties. This infe-
rence is not general purpose (as inference must for an ownership type system)
but context specific: different sets of abstraction rules are required for signifi-
cantly different implementations of each abstraction. For example, one rule set
it seems can handle all kinds of singly-linked lists, but a doubly-linked list, or an
array-list would require a different set of rules. The ability to customize jStar to
handle different abstractions is clearly very powerful, and enables jStar to verify
programs without any annotations other than pre and post conditions. These
abstraction rules may turn out to be brittle in practice, or to need customizing
to suit each system being verified—more experimentation is clearly needed here,
but the demonstrated system was very promising!

At least for small examples, however, jStar provides a convincing argument
for the benefits of this approach. jStar provides “full automatic” verification of
a range of programs, even when incorporating examples that ownership-based
systems find very difficult to model, such as the Observer pattern, structure sha-
ring, and ownership transfer. As demonstrated, the performance of jStar doing



full verification did not seem much slower than a Java compiler running on the
same examples: raising the question of why bother with complex “intermediate”
systems such as ownership (or even language-level types) if a program prover
can verify programs without these annotations? On the other hand, it seems
as if ownership systems can avoid the need for these inference rules, because
programs’ abstractions are already structured via ownership.

The second presentation in this session, by Christian Haack and Clément
Hurlin, also used separation logic. Christian and Clément presented a series of
specifications for Iterators of various different kinds. This separation logic uses
a form of linear implication to represent state transitions (as well as heap se-
paration) and includes Boyland-style fractional permissions [18]. These features
enable the system easily to encompass typestate-style modeling (e.g., an iterator
is ready for reading; has been accessed; or is at the end of the traversal) and to
distinguish between read-write, read-only, and immutable accesses to objects.

The key contribution of this work seems to be that the Iterator specifications
are parameterized. The final declaration of an Iterator interface is:

interface Iterator
/*@<perm p, boolean isdeep, Collection<isdeep> iteratee>@*/

with three parameters p, isdeep, and iteratee. (In this system, specifications
are given in extended comment syntax.) The iteratee parameter is the most
straightforward to explain; it is the collection to be iterated over. The p parame-
ter is a fractional permission (thus perm) controlling access to the collection: set
to 1, the Iterator has exclusive (and thus read-write) access to the collection, set
to less than one, the Iterator has shared (read-only) access to the collection.
Finally the third parameter isdeep captures an ownership relation between
the container and its elements: a “deep” collection owns its elements while a
“shallow” collection does not. (Note that distinction is similar to that between
“full” and “flexible” alias protection [25], although the alias protection schemes
controlled references, while the these separation-based schemes control only the
permission to read or write references.) Then, a single specification for an itera-
tor protocol can be configured in a number of different ways: an iterator over a
collection of immutable elements; as a set of concurrent read-only iterators; or
a shallow iterator over a mutable collection.

This presentation again demonstrated the utility of separation logic for des-
cribing complex and flexible structures, especially where structure sharing is in-
volved, and the parameterization mechanism clearly makes specifications more
concise, especially where families of related specifications are concerned. A par-
ticularly interesting feature of this work was the “isdeep” ownership parameter:
it is not clear whether this is an accident of the particular specification examples
chosen, or illustrates some more essential role for ownership even in systems
where the underlying representation is separation logic.

The workshop was bookended with a tool demo by Jonathan Aldrich, who
also opened the workshop. He demonstrated the Plural tool, work carried out



with his student Kevin Bierhoff [4]. Plural is a practical typestate checker for
object-oriented programs, a successor to Rob DeLine and Manuel Fähndrich’s
Fugue [30] in that both systems model abstractions of objects’ state and check
that methods are only called on objects in permissible states. The key difference
between Plural and Fugue is that Plural’s analyses are based on permissions
(similar to Boyland’s capabilities for sharing [7] and fractional permissions [5]).
In contrast to Fugue, where an object could only change typestate while it was
unique, Plural’s permissions mean that typestate analysis is feasible in the pre-
sence of aliasing [3,1].

Plural is implemented as an Eclipse plugin, and can calculate permissions
across all references in entire programs via a flow-sensitive analysis. Then, me-
thods specifications in terms of permissions and typestates can be checked against
the actual behavior of objects’ client code. For example, a file close method has
specification such as:

class File { ...
@Full{requires = "open", ensures = "close"}
public void close{};

}

The key contribution of this work is that its access permissions combine both
aliasing and typestate information. The annotation on the close() method
states both that a “@Full” permission is required—this reference may read and
write, other references may read (OIRWW̄ [7])—and that the method must be
called in the “open” typestate and changes the object to the “closed” types-
tate. (Note that Java annotations are used to encode specifications, rather than
extended comments.)

6 Future

It appears that the community working on aliasing and ownership has reached
critical mass, if the number of submissions, participants, and presentations are
any indication. Consequently, we plan to repeat the workshop in conjunction
with ECOOP 2009.



A Participants

IWACO gathered 28 participants from 8 different countries.

Suad Alagic University of Southern Maine (USA)
Jonathan Aldrich Carnegie Mellon University (USA)
Anindya Banerjee Kansas State University (USA)
Frédéric Besson IRISA/INRIA (France)
John Boyland University of Wisconsin-Milwaukee (USA)
Nicholas Cameron Imperial College (UK)
Dave Clarke Katholieke Universiteit Leuven (Belgium)
David Cunningham Imperial College (UK)
Dino Distefano University of Cambridge (UK)
Sophia Drossopoulou Imperial College (UK)
Patrick Eugster Purdue University (USA)
Adrian Fiech Memorial University (Canada)
Christian Haack Radboud University Nijmegen (The Netherlands)
Clément Hurlin INRIA (France)
Yu David Liu The Johns Hopkins University (USA)
Nicholas Matsakis ETH Zürich (Switzerland)
Ana Milanova Rensselaer Polytechnic Institute (USA)
Peter Müller Microsoft Research (USA)
James Noble Victoria University of Wellington (New Zealand)
Johan Östlund Purdue University (USA)
Alex Potanin Victoria University of Wellington (New Zealand)
Jan Smans Katholieke Universiteit Leuven (Belgium)
Rok Strnisa University of Cambridge (UK)
Alex Summers Imperial College (UK)
Tiphaine Turpin IRISA/INRIA (France)
Jan Vitek Purdue University (USA)
Stefan Wehr University of Freiburg (Germany)
Tobias Wrigstad Purdue University (USA)



B Program Committee

Kevin Bierhoff Carnegie Mellon University (USA)
John Boyland University of Wisconsin-Milwaukee (USA)
Werner Dietl ETH Zurich (Switzerland)
Manuel Fähndrich Microsoft Research Redmond (USA)
Jeff Foster University of Maryland, College Park (USA)
Peter Müller (chair) Microsoft Research Redmond (USA)
David Naumann Stevens Institute of Technology (USA)
Matthew Parkinson University of Cambridge (UK)
Arnd Poetzsch-Heffter University of Kaiserslautern (Germany)
Mooly Sagiv Tel-Aviv University (Isreal)
Tobias Wrigstad Purdue University (USA)

C Organizers

Dave Clarke Katholieke Universiteit Leuven (Belgium)
Sophia Drossopoulou Imperial College (UK)
James Noble Victoria University of Wellington (New Zealand)
Tobias Wrigstad Purdue University (USA)

References

1. N. Beckman, K. Bierhoff, and J. Aldrich. Verifying correct usage of atomic blocks
and typestate. In G. Kiczales, editor, Object-Oriented Programing, Systems, Lan-
guages, and Applications (OOPSLA), ACM SIGPLAN Notices. ACM Press, 2008.
To appear.

2. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Modular automatic as-
sertion checking with separation logic. In Formal Methods for Components and
Objecs (FMCO), volume 3780 of LNCS, pages 115–137. Springer, 2005.

3. K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In
Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA),
ACM SIGPLAN Notices. ACM Press, 2007.

4. K. Bierhoff and J. Aldrich. PLURAL: Checking protocol compliance under aliasing.
In Demonstration in ICSE Companion, pages 971–972, 2008.

5. J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor,
Static Analysis (SAS), volume 2694 of LNCS, pages 55–72. Springer, 2003.

6. J. Boyland. Why we should not add readonly to java (yet). Journal of Object
Technology, 5(5):5–29, 2006.

7. J. Boyland, J. Noble, and W. Retert. Capabilities for Sharing: A Generalization of
Uniqueness and Read-Only. In J. Lindskov Knudsen, editor, European Conference
on Object-Oriented Programming (ECOOP), volume 2072 of LNCS. Springer, 2001.

8. S. Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci.,
375(1-3):227–270, 2007.

9. D. Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, 2001.



10. D. Clarke, S. Drossopoulou, and J. Noble. Aliasing, confinement, and ownership in
object-oriented programming. In Object-Oriented Technology. ECOOP Workshop
Reader, volume 3013 of LNCS, pages 197–207. Springer, 2004.

11. D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Aliasing, confinement,
and ownership in object-oriented programming. In M. Cebulla, editor, Object-
Oriented Technology. ECOOP Workshop Reader, volume 4906 of LNCS, pages
40–49. Springer, 2007.

12. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In L. Cardelli,
editor, European Conference on Object-Oriented Programming (ECOOP), volume
2743 of LNCS, pages 176–200. Springer, 2003.

13. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In Object-Oriented Programing, Systems, Languages, and Applications
(OOPSLA), volume 33(10) of ACM SIGPLAN Notices, pages 48–64. ACM Press,
1998.

14. W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In E. Ernst,
editor, European Conference on Object-Oriented Programming (ECOOP), volume
4609 of LNCS, pages 28–53. Springer, 2007.

15. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology (JOT), 4(8):5–32, 2005.

16. D. Distefano, P.W. O’Hearn, and H. Yang. A local shape analysis based on separa-
tion logic. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 3920 of LNCS, pages 238–252. Springer, 2006.

17. D. Distefano and M. J. Parkinson. jStar: Towards practical verification for Java.
In G. Kiczales, editor, Object-Oriented Programing, Systems, Languages, and Ap-
plications (OOPSLA), ACM SIGPLAN Notices. ACM Press, 2008. To appear.

18. C. Haack and C. Hurlin. Separation logic contracts for a Java-like language with
fork/join. In Algebraic Methodology and Software Technology (AMAST), volume
5140 of LNCS, pages 199–215. Springer, 2008.

19. J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The Geneva Convention
on the treatment of object aliasing. OOPS Messenger, 3(2):11–16, 1992.

20. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, and Daniel M. Zimmerman. JML reference manual. Department of
Computer Science, Iowa State University. Available from www.jmlspecs.org, 2008.

21. K. R. M. Leino. Data groups: Specifying the modification of extended state. In
Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA),
volume 33(10) of ACM SIGPLAN Notices, pages 144–153, 1998.

22. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts.
In M. Odersky, editor, European Conference on Object-Oriented Programming
(ECOOP), volume 3086 of LNCS, pages 491–516. Springer, 2004.

23. Y. Liu and A. Milanova. Ownership and immutability inference for uml-based
object access control. In International Conference on Software Engineering (ICSE),
pages 323–332. IEEE Computer Society, 2007.

24. P. Müller and A. Rudich. Ownership transfer in Universe Types. In Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA), pages
461–478. ACM Press, 2007.

25. J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor,
European Conference on Object-Oriented Programming (ECOOP), volume 1445 of
LNCS, pages 158–185. Springer, 1998.

26. J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership, uniqueness, and
immutability. In R. Paige and B. Meyer, editors, TOOLS Europe, volume 11 of
Lecture Notes in Business Information Processing, pages 178–197. Springer, 2008.



27. M. J. Parkinson. Class invariants: the end of the road. Presented at IWACO, 2007.
28. M. J. Parkinson and G. Bierman. Separation logic, abstraction, and inheritance.

In Principles of Programming Languages (POPL), pages 75–86. ACM Press, 2005.
29. A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic

java. In W. Cook, editor, Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA), volume 41(10) of ACM SIGPLAN Notices, pages 311–
324. ACM Press, 2006.

30. DeLine R and M. Fähndrich. Typestates for objects. In European Conference on
Object-Oriented Programming (ECOOP), LNCS, pages 465–490. Springer, 2004.

31. Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieżun, and M. D. Ernst. Object and re-
ference immutability using java generics. In European software engineering confe-
rence and foundations of software engineering (ESEC-FSE), pages 75–84. ACM
Press, 2007.


