Abstract
Many wireless standards and protocols today, such as WLAN and Bluetooth, operate on similar frequency bands. While this permits an efficient usage of the limited medium capacity, transmissions of nodes running different protocols can interfere. This paper studies how to design node discovery algorithms for wireless multichannel networks which are robust against contending protocols on the shared medium. We pursue a conservative approach and consider a Byzantine adversary who prevents the communication of our protocol on t channels in a worst-case fashion. Our model also captures disruptions controlled by an adversarial jammer. This paper presents algorithms for scenarios where t is not known. The analytical findings are complemented by simulations providing evidence that the proposed protocols perform well in practice.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alnifie, G., Simon, R.: A Multi-channel Defense Against Jamming Attacks in Wireless Sensor Networks. In: Proc. 3rd ACM Workshop on QoS and Security for Wireless and Mobile Networks (Q2SWinet) (2007)
Alonso, G., Kranakis, E., Sawchuk, C., Wattenhofer, R., Widmayer, P.: Randomized Protocols for Node Discovery in Ad-hoc Multichannel Broadcast Networks. In: Proc. 2nd Conference on Adhoc Networks and Wireless (ADHOCNOW) (2003)
Alonso, G., Kranakis, E., Wattenhofer, R., Widmayer, P.: Probabilistic Protocols for Node Discovery in Ad-Hoc, Single Broadcast Channel Networks. In: Proc. 17th International Symposium on Parallel and Distributed Processing (IPDPS) (2003)
Awerbuch, B., Richa, A., Scheideler, C.: A Jamming-Resistant MAC Protocol for Single-Hop Wireless Networks. In: Proc. 27th Symposium on Principles of Distributed Computing (PODC) (2008)
Bayraktaroglu, E., King, C., Liu, X., Noubir, G., Rajaraman, R., Thapa, B.: On the Performance of IEEE 802.11 under Jamming. In: Proc. 27th Joint Conference of the IEEE Computer Communication Societies (INFOCOM) (2008)
Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1992)
Chiang, J.T., Hu, Y.-C.: Cross-layer Jamming Detection and Mitigation in Wireless Broadcast Networks. In: Proc. 13th ACM Conference on Mobile Computing and Networking (MobiCom) (2007)
Commander, C.W., Pardalos, P.M., Ryabchenko, V., Uryasev, S., Zrazhevsky, G.: The Wireless Network Jamming Problem. In Air Force Research Laboratory, Tech. Report 07-11-06-332 (2007)
Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-Channel Radio Network (An Oblivious Approach to Coping With Malicious Interference). In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)
Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure Communication over Radio Channels. In: Proc. 27th ACM Symposium on Principles of Distributed Computing (PODC), pp. 105–114 (2008)
Gilbert, S., Guerraoui, R., Newport, C.: Of Malicious Motes and Suspicious Sensors. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 215–229. Springer, Heidelberg (2006)
IEEE 802.15.2 Taskforce. Coexistence Mechanisms (2008), http://www.ieee802.org/15/pub/TG2-Coexistence-Mechanisms.html
Koo, C.-Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable Broadcast in Radio Networks: the Bounded Collision Case. In: Proc. 25th ACM Symposium on Principles of Distributed Computing (PODC) (2006)
Krishnamoorthy, S., Robert, M., Srikanteswara, S., Valenti, M.C., Anderson, C.R., Reed, J.H.: Channel Frame Error Rate for Bluetooth in the Presence of Microwave Ovens. In: Proc. Vehicular Technology Conference (2002)
Law, C., Mehta, A., Siu, K.-Y.: Performance of a Bluetooth Scatternet Formation Protocol. In: Proc. 2nd ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHoc) (2001)
Law, Y.W., van Hoesel, L., Doumen, J., Hartel, P., Havinga, P.: Energy-efficient Link-layer Jamming Attacks Against Wireless Sensor Network MAC Protocols. In: Proc. 3rd ACM Workshop on Security of Ad hoc and Sensor Networks (SASN) (2005)
Li, M., Koutsopoulos, I., Poovendran, R.: Optimal Jamming Attacks and Network Defense Policies in Wireless Sensor Networks. In: Proc. 26th Joint Conference of the IEEE Computer Communication Societies (INFOCOM) (2007)
Noubir, G.: On connectivity in ad hoc networks under jamming using directional antennas and mobility. In: Langendoerfer, P., Liu, M., Matta, I., Tsaoussidis, V. (eds.) WWIC 2004. LNCS, vol. 2957, pp. 186–200. Springer, Heidelberg (2004)
Pelc, A., Peleg, D.: Feasibility and Complexity of Broadcasting with Random Transmission Failures. Theoretical Computer Science 370(1-3), 279–292 (2007)
Roberts, L.G.: ALOHA Packet System with and without Slots and Capture. SIGCOMM Computer Communication Review 5(2), 28–42 (1975)
Tay, Y.C., Jamieson, K., Balakrishnan, H.: Collision-Minimizing CSMA and Its Applications to Wireless Sensor Networks. IEEE Journal on Selected Areas in Communications 22(6) (2004)
Wood, A.D., Stankovic, J.A., Zhou, G.: DEEJAM: Defeating Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks. In: Proc. 4th IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) (2007)
Xu, W., Ma, K., Trappe, W., Zhang, Y.: Jamming Sensor Networks: Attack and Defense Strategies. IEEE Network (2006)
Xu, W., Wood, T., Trappe, W., Zhang, Y.: Channel Surfing and Spatial Retreats: Defenses against Wireless Denial of Service. In: Proc. 3rd ACM Workshop on Wireless Security (WiSe) (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R. (2009). Speed Dating Despite Jammers. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds) Distributed Computing in Sensor Systems. DCOSS 2009. Lecture Notes in Computer Science, vol 5516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02085-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-02085-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02084-1
Online ISBN: 978-3-642-02085-8
eBook Packages: Computer ScienceComputer Science (R0)