Skip to main content

Cheap or Flexible Sensor Coverage

  • Conference paper
Distributed Computing in Sensor Systems (DCOSS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5516))

Included in the following conference series:

Abstract

We consider dual classes of geometric coverage problems, in which disks, corresponding to coverage regions of sensors, are used to cover a region or set of points in the plane. The first class of problems involve assigning radii to already-positioned sensors (being cheap). The second class of problems are motivated by the fact that the sensors may, because of practical difficulties, be positioned with only approximate accuracy (being flexible). This changes the character of some coverage problems that solve for optimal disk positions or disk sizes, ordinarily assuming the disks can be placed precisely in their chosen positions, and motivates new problems. Given a set of disk sensor locations, we show for most settings how to assign either (near-)optimal radius values or allowable amounts of placement error. Our primary results are 1) in the 1-d setting we give a faster dynamic programming algorithm for the (linear) sensor radius problem; and 2) we find a max-min fair set of radii for the 2-d continuous problems in polynomial time. We also give results for other settings, including fast approximation algorithms for the 1-d continuous case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Arkin, E.M., Bronnimann, H., Erickson, J., Fekete, S.P., Knauer, C., Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: SoCG 2006 (2006)

    Google Scholar 

  2. Bertsekas, D.P., Gallager, R.G.: Data Networks, 2nd edn. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  3. Biló, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Brass, P.: Bounds on coverage and target detection capabilities for models of networks of mobile sensors. ACM T. on Sensor Networks 3(2) (2007)

    Google Scholar 

  5. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric graphs. In: SODA 2001 (2001)

    Google Scholar 

  6. Gibson, M., Kanade, G., Krohn, E., Pirwani, I., Varadarajan, K.: On clustering to minimize the sum of radii. In: SODA 2008 (2008)

    Google Scholar 

  7. Hefeeda, M., Ahmadi, H.: A probabilistic coverage protocol for wireless sensor networks. In: ICNP 2007 (2007)

    Google Scholar 

  8. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1) (1985)

    Google Scholar 

  9. Huang, C.-F., Tseng, Y.-C.: The coverage problem in a wireless sensor network. Mobile Networks and Applications 10(4), 519–528 (2005)

    Article  Google Scholar 

  10. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms 26(2) (1998)

    Google Scholar 

  11. Johnson, M.P., Sarioz, D., Bar-Noy, A., Brown, T., Verma, D., Wu, C.-W.: More is more: the benefits of denser sensor deployment. In: INFOCOM 2009 (2009)

    Google Scholar 

  12. Kershner, R.: The number of circles covering a set. Amer. J. Math. 61, 665–671 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lenchner, J.: A faster dynamic programming algorithm for facility location. In: FWCG 2006 (2006)

    Google Scholar 

  14. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Computer Networks 47(4), 489–501 (2005)

    Article  MATH  Google Scholar 

  15. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  16. Zhang, H., Hou, J.: Maintaining sensing coverage and connectivity in large sensor networks. In: WTASA 2004 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bar-Noy, A., Brown, T., Johnson, M.P., Liu, O. (2009). Cheap or Flexible Sensor Coverage. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds) Distributed Computing in Sensor Systems. DCOSS 2009. Lecture Notes in Computer Science, vol 5516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02085-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02085-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02084-1

  • Online ISBN: 978-3-642-02085-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics