Skip to main content

Minimum Cycle Bases and Their Applications

  • Chapter
Algorithmics of Large and Complex Networks

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5515))

Abstract

Minimum cycle bases of weighted undirected and directed graphs are bases of the cycle space of the (di)graphs with minimum weight. We survey the known polynomial-time algorithms for their construction, explain some of their properties and describe a few important applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  2. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  3. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  4. Paton, K.: An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 514–519 (1969)

    Article  MATH  Google Scholar 

  5. Hartvigsen, D., Zemel, E.: Is every cycle basis fundamental? J. Graph Theory 13, 117–137 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deo, N., Prabhu, G., Krishnamoorthy, M.: Algorithms for generating fundamental cycles in a graph. ACM Trans. Math. Softw. 8, 26–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle bases for network graphs. Algorithmica 40, 51–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Horton, J., Berger, F.: Minimum cycle bases of graphs over different fields. Electronic Notes in Discrete Mathematics 22, 501–505 (2005)

    Article  MATH  Google Scholar 

  9. Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of a directed graph. Information Processing Letters 94, 107–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hubicka, E., Sysło, M.: Minimal bases of cycles of a graph. In: Fiedler, M. (ed.) Recent Advances in Graph Theory, Proc. 2nd Czechoslovak Conference on Graph Theory, Academia, pp. 283–293 (1975)

    Google Scholar 

  11. Plotkin, M.: Mathematical basis of ring-finding algorithms in CIDS. J. Chem. Documentation 11, 60–63 (1971)

    Article  Google Scholar 

  12. Horton, J.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput. 16, 358–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vismara, P.: Union of all the minimum cycle bases of a graph. Electronic J. Comb. 4, R9 (1997)

    MathSciNet  MATH  Google Scholar 

  14. de Pina, J.: Applications of shortest path methods. Ph.D thesis, University of Amsterdam, The Netherlands (2002)

    Google Scholar 

  15. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, p. 200. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: A faster algorithm for minimum cycle bases of graphs. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Mehlhorn, K., Michail, D.: Minimum cycle bases: Faster and simpler. ACM Trans. Algorithms (2009) (to appear)

    Google Scholar 

  18. Kavitha, T., Mehlhorn, K.: Algorithms to compute minimum cycle basis in directed graphs. Theory of Computing Systems 40, 485–505 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartvigsen, D., Mardon, R.: The prism-free planar graphs and their cycles bases. J. Graph Theory 15, 431–441 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berger, F.: Minimum cycle bases in graphs. Ph.D thesis, TU München (2004)

    Google Scholar 

  21. Amaldi, E., Liberti, L., Maculan, N., Maffioli, F.: Efficient edge-swapping heuristics for finding minimum fundamental cycle bases. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 14–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Hartvigsen, D., Mardon, R.: When do short cycles generate the cycle space? J. Comb. Theory, Ser. B 57, 88–99 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kavitha, T., Mehlhorn, K., Michail, D.: New approximation algorithms for minimum cycle bases of graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 512–523. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Hariharan, R., Kavitha, T., Mehlhorn, K.: Faster deterministic and randomized algorithms for minimum cycle basis in directed graphs. SIAM J. Comp. 38, 1430–1447 (2008)

    Article  MATH  Google Scholar 

  25. Liebchen, C., Rizzi, R.: Classes of cycle bases. Discrete Appl. Math. 55, 337–355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Galbiati, G., Amaldi, E.: On the approximability of the minimum fundamental cycle basis problem. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 151–164. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Rizzi, R.: Minimum weakly fundamental cycle bases are hard to find. Algorithmica (2009), doi:10.1007/s00453–007–9112–8

    Google Scholar 

  28. Elkin, M., Liebchen, C., Rizzi, R.: New length bounds for cycle bases. Information Processing Letters 104, 186–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, W.K.: Active Network Analysis. Advanced series in electrical and computer engineering, vol. 2. World Scientific, Singapore (1991)

    Book  Google Scholar 

  30. Hachtel, G., Brayton, R., Gustavson, F.: The sparse tableau approach to network analysis and design. IEEE Transactions of Circuit Theory CT-18, 111–113 (1971)

    Article  Google Scholar 

  31. Estévez-Schwarz, D., Feldmann, U.: Diagnosis of erroneous circuit descriptions. Slides of a presentation, Paderborn (March 2003)

    Google Scholar 

  32. Downs, G.M., Gillet, V.J., Holliday, J.D., Lynch, M.F.: Review of ring perception algorithms for chemical graphs. J. Chem. Inf. Comput. Sci. 29, 172–187 (1989)

    Article  Google Scholar 

  33. Gleiss, P., Leydold, J., Stadler, P.: Interchangeability of relevant cycles in graphs. Electronic J. Comb. 7, R16 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Berger, F., Gritzmann, P., de Vries, S.: Computing cyclic invariants for molecular graphs (2008) (manuscript)

    Google Scholar 

  35. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Discrete Math. 2, 550–581 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Odijk, M.: Railway timetable generation. Ph.D thesis, TU Delft, The Netherlands (1997)

    Google Scholar 

  37. Nachtigall, K.: Periodic network optimization with different arc frequencies. Discrete Appl. Math. 69, 1–17 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nachtigall, K., Voget, S.: Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks. Europ. J. Oper. Res. 103, 610–627 (1997)

    Article  MATH  Google Scholar 

  39. Liebchen, C., Möhring, R.: A case study in periodic timetabling. In: Proceedings of ATMOS 2002. Elec. Notes in Theor. Comput. Sci (ENTS), vol. 66.6 (2002)

    Google Scholar 

  40. Liebchen, C., Proksch, M., Wagner, F.: Performance of algorithms for periodic timetable optimization. In: Computer-aided Systems in Public Transport. Lect. Notes in Economics and Mathematical System, vol. 600, pp. 151–180 (2008)

    Google Scholar 

  41. Liebchen, C.: Finding short integral cycle bases for cyclic timetabling. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 715–726. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  42. Liebchen, C., Möhring, R.: The modeling power of the periodic event scheduling problem: railway timetables – and beyond. In: Computer-aided Systems in Public Transport, pp. 117–150 (2008)

    Google Scholar 

  43. Kaminski, A.: Erzeugung und Optimierung zyklischer Zeitpläne. Diploma Thesis (in German), TU München (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, F., Gritzmann, P., de Vries, S. (2009). Minimum Cycle Bases and Their Applications. In: Lerner, J., Wagner, D., Zweig, K.A. (eds) Algorithmics of Large and Complex Networks. Lecture Notes in Computer Science, vol 5515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02094-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02094-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02093-3

  • Online ISBN: 978-3-642-02094-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics