Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5515))

  • 4094 Accesses

Abstract

In view of the steadily growing car traffic and the limited capacity of our street networks, we are facing a situation where methods for better traffic management are becoming more and more important. Studies [92] show that an individual “blind” choice of routes leads to travel times that are between 6% and 19% longer than necessary. On the other hand, telematics and sensory devices are providing or will shortly provide detailed information about the actual traffic flows, thus making available the necessary data to employ better means of traffic management.

A preliminary version of this paper has appeared as [59]. Some parts have been taken from the following papers:[9,29,41,51,58,61].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Aneja, Y.P., Aggarwal, V., Nair, K.P.K.: Shortest chain subject to side constraints. Networks 13, 295–302 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronson, J.E.: A survey of dynamic network flows. Annals of Operations Research 20, 1–66 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babonneau, F., du Merle, O., Vial, J.-P.: Solving large-scale linear multicommodity flow problems with an active set strategy and proximal-accpm. Operations Research 54(1), 184–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bar-Gera, H.: Transportation network test problems (2002), http://www.bgu.ac.il/~bargera/tntp/

  6. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm (submitted) (2008)

    Google Scholar 

  7. Baumann, N.: Evacuation by Earliest Arrival Flows. Ph.D thesis, Universität Dortmund (2007)

    Google Scholar 

  8. Baumann, N., Köhler, E.: Approximating earliest arrival flows with flow-dependent transit times. Discrete Appl. Math. 155, 161–171 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baumann, N., Skutella, M.: Solving evacuation problems efficiently: Earliest arrival flows with multiple sources. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, Berkeley, CA, pp. 399–408 (2006)

    Google Scholar 

  10. Beccaria, G., Bolelli, A.: Modelling and assessment of dynamic route guidance: the MARGOT project. In: Vehicle Navigation & Information Systems Conference Proceedings (VNIS 1992), pp. 117–126. IEEE, Los Alamitos (1992)

    Chapter  Google Scholar 

  11. Beckmann, M., McGuire, C.B., Winston, C.B.: Studies in the economics of transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  12. Ben-Akiva, M., Koutsopoulos, H., Mishalani, R., Yang, Q.: Simulation laboratory for evaluating dynamictraffic management systems. ASCE Journal of Transportation Engineering 123(4), 283–289 (1997)

    Article  Google Scholar 

  13. Berlin, G.N.: The use of directed routes for assessing escape potential. National Fire Protection Association, Boston (1979)

    Google Scholar 

  14. Braess, D.: Über ein paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)

    MathSciNet  MATH  Google Scholar 

  15. Burkard, R.E., Dlaska, K., Klinz, B.: The quickest flow problem. ZOR — Methods and Models of Operations Research 37, 31–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Busaker, R.G., Gowen, P.J.: A procedure for determining minimal-cost network flow patterns. Technical Report 15, Operational Research Office. John Hopkins University, Baltimore, MD (1961)

    Google Scholar 

  17. Carey, M.: A constraint qualification for a dynamic traffic assignment model. Transp. Science 20, 55–58 (1986)

    Article  Google Scholar 

  18. Carey, M.: Optimal time-varying flows on congested networks. OR 35, 58–69 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carey, M., Subrahmanian, E.: An approach for modelling time-varying flows on congested networks. Transportation Research B 34, 157–183 (2000)

    Article  Google Scholar 

  20. Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network models for building evacuation. Management Science 28, 86–105 (1982)

    Article  Google Scholar 

  21. Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Selfish routing in capacitated networks. Mathematics of Operations Research 29(4), 961–976 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. DIMACS. 9th Implementation Challenge – Shortest Paths (2006)

    Google Scholar 

  23. Dirkse, S.P., Ferris, M.C.: Traffic modeling and variational inequalities using GAMS. In: Toint, P.L., Labbe, M., Tanczos, K., Laporte, G. (eds.) Operations Research and Decision Aid Methodologies in Traffic and Transportation Management, vol. 166, pp. 136–163. Springer, Berlin (1998)

    Chapter  Google Scholar 

  24. Elias, P., Feinstein, A., Shannon, C.E.: Note on maximum flow through a network. IRE Transactions on Information Theory IT-2, 117–119 (1956)

    Article  Google Scholar 

  25. Enders, R., Lauther, U.: Method and device for computer assisted graph processing (May 1999), http://gauss.ffii.org/PatentView/EP1027578

  26. Fischer, S., Räcke, H., Vöcking, B.: Fast convergence to wardrop equilibria by adaptive sampling methods. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 653–662 (2006)

    Google Scholar 

  27. Fleischer, L., Skutella, M.: The quickest multicommodity flow problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 36–53. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate storage. In: Proceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms, Baltimore, MD, pp. 66–75 (2003)

    Google Scholar 

  29. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM Journal on Computing 36, 1600–1630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fleischer, L.K.: Faster algorithms for the quickest transshipment problem. SIAM Journal on Optimization 12, 18–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fleischer, L.K., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Operations Research Letters 23, 71–80 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Florian, M., Guélat, J., Spiess, H.: An efficient implementation of the “Partan” variant of the linear approximation method for the network equilibrium problem. Networks 17, 319–339 (1987)

    Article  MATH  Google Scholar 

  33. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  35. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  36. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics Quaterly 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  37. Gale, D.: Transient flows in networks. Michigan Mathematical Journal 6, 59–63 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gartner, N., Messer, C.J., Rathi, A.K.: Traffic flow theory: A state of the art report (1997), http://www-cta.ornl.gov/cta/research/trb/tft.html

  39. Hagstrom, J.N., Abrams, R.A.: Characterizing braess’s paradox for traffic networks. In: Proceedings of IEEE 2001 Conference on Intelligent Transportation Systems, pp. 837–842 (2001)

    Google Scholar 

  40. Hajek, B., Ogier, R.G.: Optimal dynamic routing in communication networks with continuous traffic. Networks 14, 457–487 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and complexity. Theoretical Computer Science 379, 387–404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hall, A., Langkau, K., Skutella, M.: An FPTAS for quickest multicommodity flows with inflow-dependent transit times. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 71–82. Springer, Heidelberg (2003)

    Google Scholar 

  43. Hall, A., Langkau, K., Skutella, M.: An FPTAS for quickest multicommodity flows with inflow-dependent transit times. Algorithmica 47(3), 299–321 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hall, A., Schilling, H.: Flows over time: Towards a more realistic and computationally tractable model. In: Proceedings of the 7th Workshop on Algorithm Engineering and Experiments (ALENEX 2005), Vancouver, Canada, pp. 55–67. SIAM, Philadelphia (2005)

    Google Scholar 

  45. Hamacher, H.W., Tifecki, S.: On the use of lexicographic min cost flows in evacuation modeling. Naval Research Logistics 34, 487–503 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics 20, 224–230 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hoppe, B.: Efficient dynamic network flow algorithms. Ph.D thesis, Cornell University (1995)

    Google Scholar 

  48. Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems. In: Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms, Arlington, VA, pp. 433–441 (1994)

    Google Scholar 

  49. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Operations Research 25, 36–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Iri, M.: A new method of solving transportation-network problems. Journal of the Operations Research Society of Japan 26, 27–87 (1960)

    Google Scholar 

  51. Jahn, O., Möhring, R.H., Schulz, A.S., Stier Moses, N.E.: System-optimal routing of traffic flows with user constraints in networks with congestion. Oper. Res. 53(4), 600–616 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jarvis, J.J., Ratliff, H.D.: Some equivalent objectives for dynamic network flow problems. Management Science 28, 106–108 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jewel, P.A.: Optimal flow through networks. Technical Report 8, Operations Research Center. MIT, Cambridge (1958)

    Google Scholar 

  54. Kantorovich, L.V.: On the translocation of masses. Comptes Rendus (Doklady) de l’Académie des Sciences de l’U.R.S.S. 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  55. Klinz, B., Woeginger, G.J.: Minimum cost dynamic flows: The series-parallel case. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 329–343. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  56. Köhler, E., Langkau, K., Skutella, M.: Time-expanded graphs with flow-dependent transit times. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 599–611. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  57. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and constrained shortest path computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 126–138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  58. Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest path computations with arc-flags (February 2008); submitted to the Special Issue about the 9th DIMACS Implementation Challenge Workshop

    Google Scholar 

  59. Köhler, E., Möhring, R.H., Skutella, M.: Traffic networks and flows over time. In: Kramer, J. (ed.) DFG Research Center: Mathematics for Key Technologies, pp. 49–70. Berliner Mathematische Gesellschaft (2002)

    Google Scholar 

  60. Köhler, E., Skutella, M.: Flows over time with load-dependent transit times. In: Proceedings of the 13th Annual ACM–SIAM Symposium on Discrete Algorithms, San Francisco, CA, pp. 174–183 (2002)

    Google Scholar 

  61. Köhler, E., Skutella, M.: Flows over time with load-dependent transit times. SIAM Journal on Optimization 15, 1185–1202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. König, F.: Traffic optimization under route constraints with Lagrangian relaxation and cutting plane methods. In: Operations Research Proceedings 2006, pp. 53–59. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  63. Koopmans, T.C.: Optimum utilization of the transportation system. Econometrica 17, 136–146 (1949)

    Article  Google Scholar 

  64. Kotnyek, B.: An annotated overview of dynamic network flows. Rapport de recherche 4936, INRIA Sophia Antipolis (2003)

    Google Scholar 

  65. Langkau, K.: Flows Over Time with Flow-Dependent Transit Times. Ph.D thesis, TU Berlin (2003)

    Google Scholar 

  66. Lauther, U.: Slow preprocessing of graphs for extremely fast shortest path calculations. In: Lecture at the Workshop on Computational Integer Programming at ZIB (no documentation available) (1997)

    Google Scholar 

  67. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Raubal, M., Sliwinski, A., Kuhn, W. (eds.) Geoinformation und Mobilität - von der Forschung zur praktischen Anwendung, Münster, Germany. IfGI prints, vol. 22, pp. 219–230. Institut für Geoinformatik, Westfälische Wilhelms-Universität (2004)

    Google Scholar 

  68. Lovetskii, S.E., Melamed, I.I.: Dynamic network flows. Automation and Remote Control 48, 1417–1434 (1987); Translated from Avtomatika i Telemekhanika 11, 7–29 (1987)

    Google Scholar 

  69. Mahmassani, H.S., Peeta, S.: System optimal dynamic assignment for electronic route guidance in a congested traffic network. In: Gartner, N.H., Improta, G. (eds.) Urban Traffic Networks. Dynamic Flow Modelling and Control, pp. 3–37. Springer, Berlin (1995)

    Chapter  Google Scholar 

  70. Martens, M., Skutella, M.: Length-bounded and dynamic k-splittable flows. In: Haasis, H.-D., Kopfer, H., Schönberger, J. (eds.) Operations Research Proceedings 2005, pp. 297–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  71. Megiddo, N.: Combinatorial optimization with rational objective functions. Mathematics of Operations Research 4, 414–424 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  72. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. Journal of the ACM 30, 852–865 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  73. Merchant, D.K., Nemhauser, G.L.: A model and an algorithm for the dynamic traffic assignment problems. Transp. Science 12, 183–199 (1978)

    Article  Google Scholar 

  74. Merchant, D.K., Nemhauser, G.L.: Optimality conditions for a dynamic traffic assignment model. Transp. Science 12, 200–207 (1978)

    Article  Google Scholar 

  75. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Operations Research 21, 517–527 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  76. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning graphs to speed-up Dijkstra’s algorithm. ACM Journal of Experimental Algorithmics 11, Article No. 2.8 (2006)

    Google Scholar 

  77. Nagel, K., Esser, J., Rickert, M.: Large-scale traffic simulations for transportation planning. In: Stauffer, D. (ed.) Annual Review of Computational Physics VII, pp. 151–202. World Scientific Publishing Company, Singapore (2000)

    Google Scholar 

  78. Patriksson, M.: Traffic Assignment Problems: Models and Methods. VSP International Science Publishers, Utrecht (1994)

    Google Scholar 

  79. Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing. Handbooks in Operations Research and Management Science, ch. 3, vol. 8, pp. 141–295. North-Holland, Amsterdam (1995)

    Chapter  Google Scholar 

  80. Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. Elsevier Science B. V., Amsterdam (1971)

    MATH  Google Scholar 

  81. Ran, B., Boyce, D.E.: Modelling Dynamic Transportation Networks. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  82. Roughgarden, T.: How unfair is optimal routing? In: Proceedings of the 13th Annual ACM–SIAM Symposium on Discrete Algorithms, San Francisco, CA, pp. 203–204 (2002)

    Google Scholar 

  83. Roughgarden, T., Tardos, É.: How bad is selfish routing? In. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science FOCS 2000, pp. 93–102 (2000)

    Google Scholar 

  84. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  85. Schilling, H.: Route Assignment Problems in Large Networks. Ph.D thesis, Technische Universität Berlin (2006)

    Google Scholar 

  86. Schluz, A.S., Stier Moses, N.E.: Efficiency and fairness of system-optimal routing with user constraints. Networks 48(4), 223–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  87. Schrijver, A.: On the history of the transportation and maximum flow problem. Mathematical Programming 91, 437–445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  88. Schultes, D.: Route Planning in Road Networks. Ph.D thesis, Universität Karlsruhe, TH (2008)

    Google Scholar 

  89. Sheffi, Y.: Urban Transportation Networks. Prentice Hall, Englewood Cliffs (1985), http://web.mit.edu/sheffi/www/urbanTransportation.html

    Google Scholar 

  90. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Berlin (2009)

    Chapter  Google Scholar 

  91. Tjandra, S.: Dynamic Network Optimization with Application to the Evacuation Problem. Ph.D thesis, Univeristät Kaiserslautern. Shaker Verlag, Aachen (2003)

    Google Scholar 

  92. Verkehrsmanagement — Eine Bestandsaufnahme. Broschüre. Erstellt von Lösch & Partner GmbH, München, in Zusammenarbeit mit diversen deutschen Automobilherstellern (1995)

    Google Scholar 

  93. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers 1(2), 325–362 (1952)

    Article  Google Scholar 

  94. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Operations Research 19, 1602–1612 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  95. Willhalm, T.: Engineering Shortest Paths and Layout Algorithms for Large Graphs. Ph.D thesis, Universität Karlsruhe (TH), Karlsruhe (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köhler, E., Möhring, R.H., Skutella, M. (2009). Traffic Networks and Flows over Time. In: Lerner, J., Wagner, D., Zweig, K.A. (eds) Algorithmics of Large and Complex Networks. Lecture Notes in Computer Science, vol 5515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02094-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02094-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02093-3

  • Online ISBN: 978-3-642-02094-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics