Skip to main content

Visual Evaluation of Clustered Molecules in the Process of New Drugs Design

  • Conference paper
Smart Graphics (SG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5531))

Included in the following conference series:

  • 977 Accesses

Abstract

Drug design is very complex and expensive. Finding new active chemical structures is a very important goal. Both experimental and virtual (in silico) screenings can be used to explore chemical space [11][12]. With virtual screening it is possible to reduce the amount of compounds for experimental evaluations. Moreover, when the 3D structure of the target is known, candidate molecules can be put to fit in the target hole in different positions and later cluster these positions in order to find the best to fit. Therefore, we propose a visual tool that couples with Jmol[21] viewer, provides together with a means of visually exploring clustered molecules, an overview of the majority of the data, supporting thus the decision making in the process of new drugs design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilkinson, L., Anushka, A., Grossman, R.: High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions. IEEE Transactions on Visualization and Computer Graphics 12, 1363–1372 (2006)

    Article  Google Scholar 

  2. Saffer, J.D., Burnett, V.L., Chen, G., van der Spek, P.: Visual Analytics in the Pharmaceutical Industry. IEEE Computer Graphics and Applications 24, 10–15 (2004)

    Article  Google Scholar 

  3. Keim, D., Andrienko, G., Fekete, J.D., Kohlhammer Jörn, G., Guy, M.: Visual Analytics: Definition, Process, and Challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Thomas, J.J., Cook, K.A.: A Visual Analytics Agenda. IEEE Comput. Graph. Appl. 26, 10–13 (2006)

    Article  Google Scholar 

  5. Abraham, D.J.: Burgers Medicinal Chemistry and Drug Discovery, 6th edn. John Wiley & Sons/ Wiley-VCH Verlag GmbH & Co. (2003)

    Google Scholar 

  6. Lauss, M., Kriegner, A., Vierlinger, K., Noebammer, C.: Characterization of the drugged human genome. Pharmacogenomics 8, 1063–1073 (2007)

    Article  Google Scholar 

  7. Paolini, G.V., Shapland, R.H.B., van Hoorn, W.P., Mason, J.S., Hopkins, A.L.: Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006)

    Article  Google Scholar 

  8. Ojima, I.: Modern Molecular Approaches to Drug Design and Discovery. Acc. Chem. Res. 41, 2–3 (2008)

    Article  Google Scholar 

  9. Baxendale, I.R., Hayward, J.J., Ley, S.V., Tranmer, G.K.: Pharmaceutical Strategy and Innovation: An Academics Perspective. Chem. Med. Chem. 2, 268–288 (2007)

    Article  Google Scholar 

  10. Kubinyi, H.: Drug research: myths, hype and reality. Nat. Rev. Drug Disc. 2, 665–669 (2003)

    Article  Google Scholar 

  11. Ling, X.F.B.: High throughput screening informatics. Comb. Chem. High Throughput Screen 11, 249–257 (2008)

    Article  Google Scholar 

  12. Diller, D.: The synergy between combinatorial chemistry and high-throughput screening. Curr. Opin. Drug Discov. Devel 11, 346–355 (2008)

    Google Scholar 

  13. Soichet, B.K.: Virtual screening of chemical libraries. Nature 432, 862–865 (2004)

    Article  Google Scholar 

  14. Leach, A.R., Shoichet, B.K., Peishoff, C.E.: Prediction of Protein-Ligand Interactions. Docking and Scoring: Successes and Gaps. J. Med. Chem. 49, 5851–5855 (2006)

    Google Scholar 

  15. Warren, G.L., Andrews, C.W., Capelli, A.-M., Clarke, B., LaLonde, J., Lambert, M.H., Lindvall, M., Nevins, N., Semus, S.F., Senger, S., Tedesco, G., Wall, I.D., Woolven, J.M., Peishoff, C.E., Head, M.: A Critical Assessment of Docking Programs and Scoring Functions. J. Med. Chem. 49, 5912–5931 (2006)

    Article  Google Scholar 

  16. Sotriffer, C.A., Dramburg, I.: Situ Cross-Docking, To Simultaneously Address Multiple Targets. J. Med. Chem. 48, 3122–3123 (2005)

    Article  Google Scholar 

  17. Peláez, R., Therón, R., García, C.A., López, J.L., Medarde, M.: Design of New Chemoinformatic Tools for the Analysis of Virtual Screening Studies: Application to Tubulin Inhibitors Advances in Soft Computing. In: 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 2008), vol. 49(1), pp. 189–196 (2008)

    Google Scholar 

  18. Carr, R.A.E., Congreve, M., Murray, C.W., Rees, D.C.: Fragment-based lead discovery: leads by design. Drug Disc. Dev. 14, 987–992 (2005)

    Google Scholar 

  19. Irwin, J.J., Shoichet, B.K.: ZINC - A Free Database of Commercially Available Compounds for Virtual Screening. J. Chem. Inf. Model 45, 177–182 (2005)

    Article  Google Scholar 

  20. Jain, A.N.: Surflex: Fully Automatic Flexible Molecular Docking Using a Molecular Similarity-Based Search Engine. J. Med. Chem. 46, 499–511 (2003)

    Article  Google Scholar 

  21. Visualization of the superposed complexes was done with Jmol (2006), http://www.jmol.org and with MarvinBeans 4.1.2, ChemAxon, http://www.chemaxon.com

  22. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comp. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  23. Documentation describing the PDB file format, http://www.wwpdb.org/docs.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García, C.A., Therón, R., Peláez, R., López-Pérez, J.L., Santos-Garcia, G. (2009). Visual Evaluation of Clustered Molecules in the Process of New Drugs Design. In: Butz, A., Fisher, B., Christie, M., Krüger, A., Olivier, P., Therón, R. (eds) Smart Graphics. SG 2009. Lecture Notes in Computer Science, vol 5531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02115-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02115-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02114-5

  • Online ISBN: 978-3-642-02115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics