Abstract
In this paper, we address the problem of searching for a pattern in a plane graph, i.e., a planar drawing of a planar graph. To do that, we propose to model plane graphs with 2-dimensional combinatorial maps, which provide nice data structures for modelling the topology of a subdivision of a plane into nodes, edges and faces. We define submap isomorphism, we give a polynomial algorithm for this problem, and we show how this problem may be used to search for a pattern in a plane graph. First experimental results show the validity of this approach to efficiently search for patterns in images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for matching large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Ischia, Italy, pp. 149–159 (2001)
Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)
Cori, R.: Un code pour les graphes planaires et ses applications. In: Astérisque, vol. 27. Soc. Math. de, France (1975)
Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. Computer Vision and Image Understanding 93(2), 111–154 (2004)
Edmonds, J.: A combinatorial representation for polyhedral surfaces. In: Notices of the American Mathematical Society, vol. 7 (1960)
Jiang, X., Bunke, H.: Marked subgraph isomorphism of ordered graphs. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 122–131. Springer, Heidelberg (1998)
Jiang, X., Bunke, H.: Optimal quadratic-time isomorphism of ordered graphs. Pattern Recognition 32(7), 1273–1283 (1999)
Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer-Aided Design 23(1), 59–82 (1991)
Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal of Computational Geometry and Applications 4(3), 275–324 (1994)
Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2230 (2003)
McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)
Poudret, M., Arnould, A., Bertrand, Y., Lienhardt, P.: Cartes combinatoires ouvertes. Research Notes 2007-1, Laboratoire SIC E.A. 4103, F-86962 Futuroscope Cedex - France (October 2007)
Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism problem. Constraints 13(4), 518–537 (2008)
Tutte, W.T.: A census of planar maps. Canad. J. Math. 15, 249–271 (1963)
Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for subgraph isomorphism. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 728–742. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Damiand, G., de la Higuera, C., Janodet, JC., Samuel, É., Solnon, C. (2009). A Polynomial Algorithm for Submap Isomorphism. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-02124-4_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02123-7
Online ISBN: 978-3-642-02124-4
eBook Packages: Computer ScienceComputer Science (R0)