Skip to main content

Graph Regularisation Using Gaussian Curvature

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5534))

  • 834 Accesses

Abstract

This paper describes a new approach for regularising triangulated graphs. We commence by embedding the graph onto a manifold using the heat-kernel embedding. Under the embedding, each first-order cycle of the graph becomes a triangle. Our aim is to use curvature information associated with the edges of the graph to effect regularisation. Using the difference in Euclidean and geodesic distances between nodes under the embedding, we compute sectional curvatures associated with the edges of the graph. Using the Gauss Bonnet Theorem we compute the Gaussian curvature associated with each node from the sectional curvatures and through the angular excess of the geodesic triangles. Using the curvature information we perform regularisation with the advantage of not requiring the solution of a partial differential equation. We experiment with the resulting regularization process, and explore its effect on both graph matching and graph clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertalmio, M., Cheng, L.T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. Journal of Computational Physics 174, 759–780 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bougleux, S., Elmoataz, A.: Image smoothing and segmentation by graph regularization. LNCS, vol. 3656, pp. 745–752. Springer, Heidelberg (2005)

    Google Scholar 

  3. Boykov, Y., Huttenlocher, D.: A new bayesian framework for object recognition. In: Proceeding of IEEE Computer Society Conference on CVPR, vol. 2, pp. 517–523 (1999)

    Google Scholar 

  4. Chan, T., Osher, S., Shen, J.: The digital tv filter and nonlinear denoising. IEEE Trans. Image Process 10(2), 231–241 (2001)

    Article  MATH  Google Scholar 

  5. Chan, T., Shen, J.: Variational restoration of non-flat image features: Models and algorithms. SIAM J. Appl. Math. 61, 1338–1361 (2000)

    MATH  Google Scholar 

  6. Cheng, L., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level set approach. Technical report, UCLA CAM Technical Report (00-32) (September 2000)

    Google Scholar 

  7. Chung, F.R.: Spectral graph theory. In: Proc. CBMS Regional Conf. Ser. Math., vol. 92, pp. 1–212 (1997)

    Google Scholar 

  8. Cox, T., Cox, M.: Multidimensional Scaling. Chapman-Hall, Boca Raton (1994)

    MATH  Google Scholar 

  9. Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching, pp. 566–568 (1994)

    Google Scholar 

  10. ElGhawalby, H., Hancock, E.R.: Measuring graph similarity using spectral geometry. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 517–526. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Gauss, C.F.: Allgemeine Flächentheorie (Translated from Latin). W. Engelmann (1900)

    Google Scholar 

  12. Kimmel, R., Malladi, R., Sochen, N.: Images as embedding maps and minimal surfaces: Movies, color, texture, and volumetric medical images. International Journal of Computer Vision 39(2), 111–129 (2000)

    Article  MATH  Google Scholar 

  13. Lim, B.P., Montenegro, J.F., Santos, N.L.: Eigenvalues estimates for the p-laplace operator on manifolds. arXiv:0808.2028v1 [math.DG], August 14 (2008)

    Google Scholar 

  14. Lopez-Perez, L., Deriche, R., Sochen, N.: The beltrami flow over triangulated manifolds. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA 2004. LNCS, vol. 3117, pp. 135–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogintion 36, 2213–2230 (2003)

    Article  MATH  Google Scholar 

  16. Memoli, F., Sapiro, G., Osher, S.: Solving variational problems and partial differential equations, mapping into general target manifolds. Technical report, UCLA CAM Technical Report (02-04) (January 2002)

    Google Scholar 

  17. Osher, S., Shen, J.: Digitized pde method for data restoration. In: Anastassiou, E.G.A. (ed.) Analytical-Computational methods in Applied Mathematics, pp. 751–771. Chapman & Hall/CRC, New York (2000)

    Google Scholar 

  18. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  19. Sochen, N., Deriche, R., Lopez-Perez, L.: The beltrami flow over implicit manifolds. In: ICCV (2003)

    Google Scholar 

  20. Sochen, N., Deriche, R., Lopez-Perez, L.: Variational beltrami flows over manifolds. In: IEEE ICIP 2003, Barcelone (2003)

    Google Scholar 

  21. Sochen, N., Deriche, R., Lopez-Perez, L.: Variational beltrami flows over manifolds. Technical report, INRIA Resarch Report 4897 (June 2003)

    Google Scholar 

  22. Sochen, N., Kimmel, R.: Stereographic orientation diffusion. In: Proceedings of the 4th Int. Conf. on Scale-Space, Vancouver, Canada (October 2001)

    Google Scholar 

  23. Sochen, N., Kimmel, R., Malladi, R.: From high energy physics to low level vision. Report, LBNL, UC Berkeley, LBNL 39243, August, Presented in ONR workshop, UCLA, September 5 (1996)

    Google Scholar 

  24. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Processing 7, 310–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sochen, N., Zeevi, Y.: Representation of colored images by manifolds embedded in higher dimensional non-euclidean space. In: Proc. IEEE ICIP 1998, Chicago (1998)

    Google Scholar 

  26. Xiao, B., Hancock, E.R.: Heat kernel, riemannian manifolds and graph embedding. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 198–206. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Young, G., Householder, A.S.: Disscussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)

    Article  MATH  Google Scholar 

  28. Zhou, D., Schlkopf, B.: Regularization on discrete spaces. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 361–368. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. Zhou, D., Schlkopf, B.: In: Chapelle, O., Schlkopf, B., Zien, A. (eds.) Semi-supervised learning, pp. 221–232 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

ElGhawalby, H., Hancock, E.R. (2009). Graph Regularisation Using Gaussian Curvature. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02124-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02123-7

  • Online ISBN: 978-3-642-02124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics