Skip to main content

Image Segmentation Using Graph Representations and Local Appearance and Shape Models

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2009)

Abstract

A generic model-based segmentation algorithm is presented. Based on a set of training data, consisting of images with corresponding object segmentations, a local appearance and local shape model is build. The object is described by a set of landmarks. For each landmark a local appearance model is build. This model describes the local intensity values in the image around each landmark. The local shape model is constructed by considering the landmarks to be vertices in an undirected graph. The edges represent the relations between neighboring landmarks. By implying the markovianity property on the graph, every landmark is only directly dependent upon its neighboring landmarks, leading to a local shape model. The objective function to be minimized is obtained from a maximum a-posteriori approach. To minimize this objective function, the problem is discretized by considering a finite set of possible candidates for each landmark. In this way the segmentation problem is turned into a labeling problem. Mean field annealing is used to optimize this labeling problem. The algorithm is validated for the segmentation of teeth from cone beam computed tomography images and for automated cephalometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1(4), 231–331 (1987)

    Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. International Journal of Computer Vision 22(1), 66–79 (1997)

    Article  MATH  Google Scholar 

  3. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications of Pure and Applied Mathematics 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  5. Cremers, D., Rousson, M., Deriche, R.: A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape. International Journal of Computer Vision 72(2), 195–215 (2007)

    Article  Google Scholar 

  6. Cremers, D.: Statistical Shape Knowledge in Variational Image Segmentation. Universität Mannheim (2002)

    Google Scholar 

  7. Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  8. Boykov, Y., Funka-Leah, G.: Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models - Their Training and Application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  10. Cootes, T.F., Edwards, G.E., Taylor, C.J.: Active Appearance Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)

    Article  Google Scholar 

  11. Cremers, D., Osher, S.J., Soatto, S.: Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation. International Journal of Computer Vision 69(3), 335–351 (2006)

    Article  Google Scholar 

  12. Seghers, D.: Local graph-based probabilistic representation of object shape and appearance for model-based medical image segmentation. Katholieke Universiteit Leuven (2008)

    Google Scholar 

  13. Seghers, D., Hermans, J., Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Model-Based Segmentation Using Graph Representations. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 393–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Swennen, G.R.J., Schutyser, F., Hausamen, J.-E.: Three-Dimensional Cephalometry, A Color Atlas and Manual. Springer, Heidelberg (2006)

    Book  Google Scholar 

  15. Ilonen, J.: Supervised Local Image Feature Detection. Lappeenranta University of Technology (2007)

    Google Scholar 

  16. Lampinen, J., Oja, E.: Distortion tolerant pattern recognition based on self-organizing feature extraction. IEEE Transactions on Neural Networks 6, 539–547 (1995)

    Article  Google Scholar 

  17. Kämäräinen, J.-K.: Feature extraction using Gabor filters. Lappeenranta University of Technology (2003)

    Google Scholar 

  18. Koenderink, J.J., Van Doorn, A.J.: The Structure of Locally Orderless Images. International Journal of Computer Vision 31, 159–168 (1999)

    Article  Google Scholar 

  19. Li, S.Z.: Markov Random Field Modeling in Computer Vision. Springer, Heidelberg (1995)

    Book  Google Scholar 

  20. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience Publishers, Inc., New York (1953)

    MATH  Google Scholar 

  21. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  22. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE transactions on medical imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  23. Komodakis, N., Paragios, N., Tziritas, G.: MRF Optimization via Dual Decomposition: Message-Passing Revisited. In: ICCV 2007. IEEE 11th International Conference on Computer Vision, pp. 1–8 (October 2007)

    Google Scholar 

  24. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Belief Propagation for Early Vision. International Journal of Computer Vision 70(1) (October 2006)

    Google Scholar 

  25. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: MAP Estimation Via Agreement on Trees: Message-Passing and Linear Programming. IEEE Transactions on Information Theory 51(11), 3697–3717 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kolmogorov, V.: Convergent Tree-reweighted Message Passing for Energy Minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  27. Kolmogorov, V., Zabih, R.: What Energy Functions Can Be Minimized via Graph Cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2001)

    Article  MATH  Google Scholar 

  28. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  29. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  30. Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. Intelligent Biometric Tecniques in Fingerprint and Face Recognition. Chapt. 11, 355–396 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keustermans, J., Seghers, D., Mollemans, W., Vandermeulen, D., Suetens, P. (2009). Image Segmentation Using Graph Representations and Local Appearance and Shape Models. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02124-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02123-7

  • Online ISBN: 978-3-642-02124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics