Skip to main content

Efficiently Generating k-Best Solutions to Procurement Auctions

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5564))

Included in the following conference series:

Abstract

Procurement executives often find it difficult to articulate their preferences and constraints regarding auctions, making it difficult to cast procurement decisions as straightforward optimization problems. This paper presents an efficient algorithm to aid decision support in such situations. Instead of trying to compute a single optimal solution for the auction winner determination problem, we generate many candidate solutions in ascending order of buyer expenditure. Standard techniques such as clustering and dominance pruning can then trim this list to a compact yet diverse menu of alternatives; other analyses can illuminate the cost of constraints and the competitive landscape. Our efficient solution-generation algorithm addresses sealed-bid procurement auctions with multiple suppliers and multiple types of goods available in multiple units. It supports multi-sourcing and volume discounts/surcharges in bids. Our algorithm may optionally incorporate certain classes of hard constraints, generating only solutions that satisfy them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction winner determination. In: Proc. 4th Int’l Conf. on Multi-Agent Systems (ICMAS), pp. 39–46 (July 2000)

    Google Scholar 

  2. Kelly, T., Byde, A.: Generating k-best solutions to auction winner determination problems. ACM SIGecom Exchanges 6(1), 23–34 (2006); Presents an inefficient generation algorithm and extensive experimental results; see [18] and the present paper for an efficient algorithm

    Article  Google Scholar 

  3. Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combinatorial auctions. Management Science 44(8), 1131–1147 (1998)

    Article  MATH  Google Scholar 

  4. Kelly, T.: Generalized knapsack solvers for multi-unit combinatorial auctions. In: Faratin, P., Rodríguez-Aguilar, J.-A. (eds.) AMEC 2004. LNCS (LNAI), vol. 3435. Springer, Heidelberg (2006); Also available as HP Labs TR HPL-2004-21

    Google Scholar 

  5. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  6. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  7. Eppstein, D.: Finding the k shortest paths. SIAM Journal on Computing 28(2), 652–673 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beckett, J.: The business of bidding: Reinventing auctions for better results (September 2005), http://www.hpl.hp.com/news/2005/jul-sep/auctions.html

  9. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 83–89 (1959)

    Article  Google Scholar 

  10. Villeneuve, D., Desaulniers, G.: The shortest path problem with forbidden paths. European Journal of Operations Research 165, 97–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)

    Google Scholar 

  12. Henig, M.: The shortest path problem with two objective functions. European Journal of Operational Research 25(2), 281–291 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Warburton, A.: Approximation of Pareto optima in multiple-objective, shortest-path problems. Operations Research 35(1), 70–79 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions, ch. 10. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  15. Lahaie, S.M., Parkes, D.C.: Applying learning algorithms to preference elicitation. In: Proc. ACM E-Commerce Conf., 180–188 (May 2004)

    Google Scholar 

  16. Boutilier, C., Sandholm, T., Shields, R.: Eliciting bid-taker non-price preferences in (combinatorial) auctions. In: Proc. AAAI (2004)

    Google Scholar 

  17. Coutinho-Rodrigues, J., Climaco, J., Current, J.: An interactive bi-objective shortest path approach: searching for unsupported nondominated solutions. Computers & Operations Research 26, 789–798 (1999)

    Article  MATH  Google Scholar 

  18. Byde, A., Kelly, T.: Efficiently generating k-best solutions for procurement auctions. Technical Report HPL-2006-145, HP Labs (October 2006); Presents a more efficient generation algorithm than that of [2]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Byde, A., Kelly, T., Zhou, Y., Tarjan, R. (2009). Efficiently Generating k-Best Solutions to Procurement Auctions. In: Goldberg, A.V., Zhou, Y. (eds) Algorithmic Aspects in Information and Management. AAIM 2009. Lecture Notes in Computer Science, vol 5564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02158-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02158-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02157-2

  • Online ISBN: 978-3-642-02158-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics