Abstract
We present a machine translation framework based on Kernel Regression techniques. The translation process is modeled as a string-to-string mapping. For doing so, first both source and target strings are mapped to a natural vector space obtaining feature vectors. Afterwards, a translation mapping is defined from the source feature vector to the target feature vector. This translation mapping is learnt by linear regression. Once the target feature vector is obtained, we use a multi-graph search to find all the possible target strings whose mappings correspond to the “translated” feature vector. We present experiments in a small but relevant task showing encouraging results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brown, P.F., et al.: The mathematics of statistical machine translation: Parameter estimation. Computational Linguistic 19(2), 263–311 (1993)
Cortes, C., Mohri, M., Weston, J.: A general regression technique for learning transductions. In: Proc. of the 22nd international conference on Machine learning (2005)
Cancedda, N., Gaussier, E., Goutte, C., Render, J.: Word-Sequence Kernels. Journal of Machine Learning Research 3, 1059–1082 (2003)
Wang, Z., Shawe-Taylor, J.: Kernel Regression Based Machine Translation. In: NAACL HLT 2007, Companion Volume, pp. 185–188 (2007)
Koehn, P., Och, F.J., Marcu, D.: Statistical phrase based translation. In: Proceedings of HLT/NACL (2003)
Cortes, C., Mohri, M., Weston, J.: A General Regression Framework for Learning String-to-String Mappings. In: Predicting Structured Data. MIT Press, Cambridge (2007)
Gross, J.L., Yellen, J.: Handbook of Graph Theory, pp. 253–260. CRC Press, Boca Raton (2004)
Och, F.J., Ney, H.: The alignment template approach to statistical machine translation. Computational Linguistics 30(4), 417–449
Koehn, P., Hoang, H., Birch, A., Callison-Burch, C.: Moses: Open Source Toolkit for Statistical Machine Translation. In: Proc. of ACL 2007, pp. 177–180 (2007)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)
Goodman, J.T.: An empirical study of smoothing techniques for language modelling. In: Proc. of ACL 1996, pp. 310–318 (1996)
Casacuberta, F., et al.: Some approaches to statistical and finite-state speech-to-speech tranlation. Computer Speech and Language 18, 25–47 (2004)
Stolcke, A.: SRILM - An Extensible Language Modeling Toolkit. In: Proc. Intl. Conf. Spoken Language Processing, Denver, Colorado (September 2002)
Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Computer Journal 7, 308–313 (1965)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: ACL 2002, pp. 311–318 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Serrano, N., Andrés-Ferrer, J., Casacuberta, F. (2009). On a Kernel Regression Approach to Machine Translation. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-02172-5_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02171-8
Online ISBN: 978-3-642-02172-5
eBook Packages: Computer ScienceComputer Science (R0)