Abstract
In this paper the Hausdorff distance, and a robust modified variant of the Hausdorff distance are used for the purpose of matching graphs whose structure can be described in terms of triangular faces. A geometric quantity from the geodesic triangle and the corresponding Euclidean triangle is deduced and used as a feature for the purposes of gauging the similarity of graphs, and hence clustering them. we experiment on sets of graphs representing the proximity image features in different views of different objects from the CMU, MOVI and chalet house sequences. By applying multidimensional scaling to the Hausdorff distances between the different object views, we demonstrate that this representation is capable of clustering the different views of the same object together.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boykov, Y., Huttenlocher, D.: A new bayesian framework for object recognition. In: Proceeding of IEEE Computer Society Conference on CVPR, vol. 2, pp. 517–523 (1999)
Cox, T., Cox, M.: Multidimensional Scaling. Chapman-Hall, Boca Raton (1994)
Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching, pp. 566–568 (1994)
ElGhawalby, H., Hancock, E.R.: Graph characteristic from the gauss-bonnet theorem. LNCS, vol. 5342, pp. 207–216 (2008)
ElGhawalby, H., Hancock, E.R.: Measuring graph similarity using spectral geometry. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 517–526. Springer, Heidelberg (2008)
Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE. Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)
Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogintion 36, 2213–2230 (2003)
Xiao, B., Hancock, E.R.: Heat kernel, riemannian manifolds and graph embedding. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 198–206. Springer, Heidelberg (2004)
Young, G., Householder, A.S.: Disscussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
ElGhawalby, H., Hancock, E.R. (2009). Characterizing Graphs Using Spherical Triangles. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_60
Download citation
DOI: https://doi.org/10.1007/978-3-642-02172-5_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02171-8
Online ISBN: 978-3-642-02172-5
eBook Packages: Computer ScienceComputer Science (R0)