Skip to main content

Characterizing Graphs Using Spherical Triangles

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5524))

Included in the following conference series:

  • 1803 Accesses

Abstract

In this paper the Hausdorff distance, and a robust modified variant of the Hausdorff distance are used for the purpose of matching graphs whose structure can be described in terms of triangular faces. A geometric quantity from the geodesic triangle and the corresponding Euclidean triangle is deduced and used as a feature for the purposes of gauging the similarity of graphs, and hence clustering them. we experiment on sets of graphs representing the proximity image features in different views of different objects from the CMU, MOVI and chalet house sequences. By applying multidimensional scaling to the Hausdorff distances between the different object views, we demonstrate that this representation is capable of clustering the different views of the same object together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boykov, Y., Huttenlocher, D.: A new bayesian framework for object recognition. In: Proceeding of IEEE Computer Society Conference on CVPR, vol. 2, pp. 517–523 (1999)

    Google Scholar 

  2. Cox, T., Cox, M.: Multidimensional Scaling. Chapman-Hall, Boca Raton (1994)

    MATH  Google Scholar 

  3. Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching, pp. 566–568 (1994)

    Google Scholar 

  4. ElGhawalby, H., Hancock, E.R.: Graph characteristic from the gauss-bonnet theorem. LNCS, vol. 5342, pp. 207–216 (2008)

    Google Scholar 

  5. ElGhawalby, H., Hancock, E.R.: Measuring graph similarity using spectral geometry. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 517–526. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE. Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)

    Article  Google Scholar 

  7. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogintion 36, 2213–2230 (2003)

    Article  MATH  Google Scholar 

  8. Xiao, B., Hancock, E.R.: Heat kernel, riemannian manifolds and graph embedding. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 198–206. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Young, G., Householder, A.S.: Disscussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

ElGhawalby, H., Hancock, E.R. (2009). Characterizing Graphs Using Spherical Triangles. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02172-5_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02171-8

  • Online ISBN: 978-3-642-02172-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics