Skip to main content

Trajectory Modeling Using Mixtures of Vector Fields

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5524))

Included in the following conference series:

  • 1843 Accesses

Abstract

Trajectory analysis plays a key role in human activity recognition and video surveillance. This paper proposes a new approach based on modeling trajectories using a bank of vector (velocity) fields. We assume that each trajectory is generated by one of a set of fields or by the concatenation of trajectories produced by different fields. The proposed approach constitutes a space-varying framework for trajectory modeling and is able to discriminate among different types of motion regimes. Furthermore, the vector fields can be efficiently learned from observed trajectories using an expectation-maximization algorithm. An experiment with real data illustrates the promising performance of the method.

This work was supported by Fundação para a Ciência e a Tecnologia (ISR/IST plurianual funding) through the POS Conhecimento Program which includes FEDER funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Triggs, B.: Tracking articulated motion with piecewise learned dynamical models. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 54–65. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Ali, S., Shah, M.: A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE Conf. Comp. Vision and Patt. Rec., Minneapolis (2007)

    Google Scholar 

  3. Boiman, O., Irani, M.: Detecting irregularities in images and in video. In: IEEE Int. Conf. on Comp. Vision, Beijing, China (2005)

    Google Scholar 

  4. Boult, T., Micheals, R., Gao, X., Eckmann, M.: Into the woods: Visual surveillance of non-cooperative camouflaged targets in complex outdoor settings. Proc. of the IEEE 89(10), 1382–1402 (2001)

    Article  Google Scholar 

  5. Dierchx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Oxford (1993)

    Google Scholar 

  6. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the ℓ1-ball for learning in high dimensions. In: Int. Conf. on Machine Learning, Helsinki, Finland (2008)

    Google Scholar 

  7. Duong, T., Bui, H., Phung, D., Venkatesh, S.: Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: IEEE Conf. Comp. Vision and Patt. Rec., San Diego, CA (2005)

    Google Scholar 

  8. Fu, Z., Hu, W., Tan, T.: Similarity based vehicle trajectory clustering and anomaly detection. In: IEEE Int. Conf. on Image Proc., Genoa, Italy (2005)

    Google Scholar 

  9. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Systems, Man, and Cybern. (Part C) 34(3), 334–352 (2004)

    Article  Google Scholar 

  10. Johnson, N., Hogg, D.C.: Learning the distribution of object trajectories for event recognition. Image and Vision Computing 14, 583–592 (1996)

    Article  Google Scholar 

  11. Junejo, I., Javed, O., Shah, M.: Multi feature path modeling for video surveillance. In: Int. Conf. on Patt. Rec., Cambridge, UK (2004)

    Google Scholar 

  12. Nascimento, J., Figueiredo, M., Marques, J.: Independent increment processes for human motion recognition. Comp. Vision & Image Underst. 109(2), 126–138 (2008)

    Article  Google Scholar 

  13. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  14. Oliver, N., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Patt. Anal. Mach. Intell. 22(8), 831–843 (2000)

    Article  Google Scholar 

  15. Pierobon, M., Marcon, M., Sarti, A., Tubaro, S.: Clustering of human actions using invariant body shape descriptor and dynamic time warping. In: IEEE Conf. on Adv. Video and Sig. Based Surv., pp. 22–27 (2005)

    Google Scholar 

  16. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  17. Wang, X., Ma, K., Ng, G., Grimson, E.: Trajectory analysis and semantic region modeling using a nonparametric Bayesian model. In: IEEE Conf. on Comp. Vision and Patt. Rec., Anchorage (2008)

    Google Scholar 

  18. Wang, X., Tieu, K., Grimson, E.: Learning semantic scene models by trajectory analysis. In: Eur. Conf. on Comp. Vision, Graz, Austria (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nascimento, J.C., Figueiredo, M.A.T., Marques, J.S. (2009). Trajectory Modeling Using Mixtures of Vector Fields. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02172-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02171-8

  • Online ISBN: 978-3-642-02172-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics