Skip to main content

Substructure Analysis of Metabolic Pathways by Graph-Based Relational Learning

  • Chapter
Biomedical Data and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 224))

  • 674 Accesses

Abstract

Systems biology has become a major field of post-genomic bioinformatics research. A biological network containing various objects and their relationships is a fundamental way to represent a bio-system. A graph consisting of vertices and edges between these vertices is a natural data structure to represent biological networks. Substructure analysis of metabolic pathways by graph-based relational learning provides us biologically meaningful substructures for system-level understanding of organisms.

This chapter presents a graph representation of metabolic pathways to describe all features of metabolic pathways and describes the application of graph-based relational learning for structure analysis on metabolic pathways in both supervised and unsupervised scenarios. We show that the learned substructures can not only distinguish between two kinds of biological networks and generate hierarchical clusters for better understanding of them, but also have important biological meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Briefings in Bioinformatics 7(3), 243–255 (2006)

    Article  Google Scholar 

  2. Bu, D., Zhao, Y., Cai, L., et al.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research 31, 2443–2450 (2003)

    Article  Google Scholar 

  3. Cheng, C.Y., Huang, C.Y., Sun, C.T.: Mining bridge and brick motifs from complex biological networks for functionally and statistically significant discovery. IEEE Transactions on Systems, Man, and Cybernetics, Part B 38(1), 17–24 (2008)

    Article  Google Scholar 

  4. Chittimoori, R., Holder, L., Cook, D.: Applying the subdue substructure discovery system to the chemical toxicity domain. In: Proceedings of the Florida AI Research Symposium, pp. 90–94 (1999)

    Google Scholar 

  5. Cook, D., Holder, L.: Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research 1, 231–255 (1994)

    Google Scholar 

  6. Cook, D., Manocha, N., Holder, L.: Using a graph-based data mining system to perform web search. International Journal of Pattern Recognition and Artificial Intelligence 17(5) (2003)

    Google Scholar 

  7. Dzerosk, S.: Multi-relational data mining: an introduction. SIGKDD Explorations Newsletter 5(1), 1–16 (2003)

    Article  Google Scholar 

  8. Gonzalez, J., Holder, L., Cook, D.: Graph-based relational concept learning. In: Proceedings of the International Conference on Machine Learning, pp. 219–226 (2002)

    Google Scholar 

  9. Holder, L., Cook, D., Coble, J., Mukherjee, M.: Graph-based relational learning with application to security. Fundamenta Informaticae Special Issue on Mining Graphs, Trees and Sequences 6, 83–101 (2005)

    MathSciNet  Google Scholar 

  10. Holder, L., Cook, D., Gonzalez, J., Jonyer, I.: Structural Pattern Recognition in Graphs. In: Pattern Recognition and String Matching, pp. 255–280. Springer, Heidelberg (2003)

    Google Scholar 

  11. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21(1), 213–221 (2005)

    Article  Google Scholar 

  12. Huan, J., Wang, W., Bandyopadhyay, D., Snoeyink, J., Prins, J., Tropsha, A.: Mining protein family specific residue packing patterns from protein structure graphs. In: Eighth Annual International Conference on Research in Computational Molecular Biology (RECOMB), pp. 308–315 (2004)

    Google Scholar 

  13. Hwang, W., Cho, Y.R., Zhang, A., Ramanathan, M.: A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology 1 (2006)

    Google Scholar 

  14. Kanehisa, M., Goto, S., Kawashima, S., Okuno, U., Hattori, M.: KEGG resource for deciphering the genome. Nucleic Acids Research 32, 277–280 (2004)

    Article  Google Scholar 

  15. Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  16. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation and Application, 1st edn. WILEY-VCH, Weinheim (2005)

    Google Scholar 

  17. Koyuturk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in biological networks. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology, vol. 20, pp. 200–207 (2004)

    Google Scholar 

  18. Kukluk, J., You, C., Holder, L., Cook, D.: Learning node replacement graph grammars in metabolic pathways. In: Proceedings of International Conference on Bioinformatics and Computational Biology, BIOCOMP 2007 (2007)

    Google Scholar 

  19. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings of the IEEE Conference on Data Mining, pp. 313–320 (2001)

    Google Scholar 

  20. Laub, M., Loomis, W.: A molecular network that produces spontaneous oscillations in excitable cells of dictyostelium. Mol. Biol. Cell 9(12), 3521–3532 (1998)

    Google Scholar 

  21. Lodhi, H., Muggleton, S.H.: Modelling metabolic pathways using stochastic logic programs-based ensemble methods. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 119–133. Springer, Heidelberg (2005)

    Google Scholar 

  22. Muggleton, S.: Inductive logic programming. New Generation Computing 8, 295–318 (1991)

    Article  MATH  Google Scholar 

  23. Muggleton, S.H., Lodhi, H., Amini, A., Sternberg, M.J.E.: Support Vector Inductive Logic Programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS, vol. 3735, pp. 163–175. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Su, S., Cook, D., Holder, L.: Application of knowledge discovery to molecular biology: Identifying structural regularities in proteins. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 4, pp. 190–201 (1999)

    Google Scholar 

  25. Tamaddoni-Nezhad, A., Kakas, A., Muggleton, S., Pazos, F.: Modelling inhibition in metabolic pathways through abduction and induction. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS, vol. 3194, pp. 305–322. Springer, Heidelberg (2004)

    Google Scholar 

  26. KEGG, http://www.genome.jp

  27. Wolf, J., Sohn, H., Heinrich, R., Kuriyama, H.: Mathematical analysis of a mechanism for autonomous metabolic oscillations in continuous culture of saccharomyces cerevisiae. FEBS Lett. 499(3), 230–234 (2001)

    Article  Google Scholar 

  28. Yan, X., Han, J.: Gspan: Graph-based substructure pattern mining. In: Proceedings of the IEEE Conference on Data Mining, pp. 721–724 (2002)

    Google Scholar 

  29. You, C., Holder, L., Cook, D.: Graph-based data mining in dynamic networks: Empirical comparison of compression-based and frequency-based subgraph mining. In: IEEE International Conference on Data Mining (ICDM) Workshop on Analysis of Dynamic Networks (2008)

    Google Scholar 

  30. You, C., Holder, L., Cook, D.: Graph-based temporal mining of metabolic pathways with microarray data. In: ACM SIGKDD Workshop on Data Mining in Bioinformatics, BIOKDD (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

You, C.h., Holder, L.B., Cook, D.J. (2009). Substructure Analysis of Metabolic Pathways by Graph-Based Relational Learning. In: Sidhu, A.S., Dillon, T.S. (eds) Biomedical Data and Applications. Studies in Computational Intelligence, vol 224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02193-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02193-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02192-3

  • Online ISBN: 978-3-642-02193-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics