Skip to main content

Classifying Patterns in Bioinformatics Databases by Using Alpha-Beta Associative Memories

  • Chapter
Biomedical Data and Applications

Summary

One of the most important genomic tasks is the identification of promoters and splice-junction zone, which are essential on deciding whether there is a gene or not in a genome sequence. This problem could be seen as a classification problem, therefore the use of computational algorithms for both, pattern recognition and classification are a natural option to face it. In this chapter we develop a pattern classifier algorithm that works notably with bioinformatics databases. The associative memories model on which the classifier is based is the Alpha-Beta model. In order to achieve a good classification performance it was necessary to develop a new heteroassociative memories algorithm that let us recall the complete fundamental set. The heteroassociative memories property of recalling all the fundamental patterns is not so common; actually, no previous model of heteroassociative memory can guarantee this property. Thus, creating such a model is an important contribution. In addition, an heteroasociative Alpha-Beta multimemory is created, as a fundamental base for the proposed classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi, P., Brunak, S.: Bioinformatics: the machine learning approach. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Doolittle, R.F.: Of URFs and ORFs: A primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley (1987)

    Google Scholar 

  3. Wolfsberg, T.G., Wetterstrand, K.A., Guyer, M.S., Collins, F.S., Baxevanis, A.D.: A user’s guide to the human genome. Nature Genetics  32 (2002)

    Google Scholar 

  4. Hassoun, M.H.: Associative Neural Memories. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  5. Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin (1989)

    Google Scholar 

  6. Ritter, G.X., Sussner, P., Diaz-de-Leon, J.L.: Morphological associative memories. IEEE Transactions on Neural Networks 9, 281–293 (1998)

    Article  Google Scholar 

  7. Lesk, A.M.: Introduction to Bioinformatics, 2nd edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  8. Altman, R.B., Valencia, A., Miyano, S., Ranganathan, S.: Challenges for intelligent system in biology. IEEE Intell. Syst. 16(6), 14–20 (2001)

    Article  Google Scholar 

  9. Setubal, J., Meidanis, J.: Introduction to computational molecular biology. International Thomson Publishing, Boston (1999)

    Google Scholar 

  10. Ray, S.S., Bandyopadhyay, S., Mitra, P., Pal, S.K.: Bioinformatics in neurocomputing framework. In: Proceedings. IEEE, Los Alamitos (2005)

    Google Scholar 

  11. Mitra, S., Hayashi, Y.: Bioinformatics with soft computing. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 616–635 (2006)

    Google Scholar 

  12. Salzberg, S.L., Searls, D.B., Kasif, S.: Computational methods in molecular biology. Elsevier Science, Amsterdam (1998)

    MATH  Google Scholar 

  13. Cohen, J.: Bioinformatics—An Introduction for Computer Scientists. ACM Computing Surveys 36(2), 122–158 (2004)

    Article  Google Scholar 

  14. Fickett, J.W.: Finding genes by computer: the state of the art. Trends Genet. 12(8), 316–320 (1996)

    Article  Google Scholar 

  15. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. In: Proceedings of the National Academy of Sciences, vol. 79, pp. 2554–2558 (1982)

    Google Scholar 

  16. Jones, D.T.: GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287, 797–815 (1999)

    Article  Google Scholar 

  17. Lukashin, A.V., Anshelevich, V.V., Amirikyan, B.R., Gragerov, A.I., Frank-Kamenetskii, M.D.: Neural network models for promoter recognition. J. Biomol. Struct. Dyn. (6), 1123–1133 (1989)

    Google Scholar 

  18. Sun, J., Song, W.Y., Zhu, L.H., Chen, R.S.: Analysis of tRNA gene sequences by neural network. J. Comput. Biol. 2(3), 409–416 (1995)

    Article  Google Scholar 

  19. Kalate, R.N., Tambe, S.S., Kulkarni, B.D.: Artificial neural networks for prediction of mycobacterial promoter sequences. Comput. Biol. Chem. 27(6), 555–564 (2003)

    Article  Google Scholar 

  20. Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202(4), 865–884 (1988)

    Article  Google Scholar 

  21. Kohonen, T.: Correlation matrix memories. IEEE Transactions on Computers, C-21 4, 353–359 (1972)

    Article  Google Scholar 

  22. Yánez, C.: Memorias Asociativas basadas en Relaciones de Orden y Operadores Binarios (In Spanish) Ph.D. Thesis. IPN Centro de Investigación en Computación, México (2002)

    Google Scholar 

  23. Yáñez-Márquez, C., Díaz de León-Santiago, J.L.: Memorias Asociativas Basadas en Relaciones de Orden y Operaciones Binarias. Computación y Sistemas 6(4), 300–311 (2003)

    Google Scholar 

  24. Yáñez-Márquez, C., Díaz de León-Santiago, J.L.: Memorias Asociativas con Respuesta Perfecta y Capacidad Infinita. In: Albornoz, A., Alvarado, M. (eds.) Taller de Inteligencia Artificial TAINA 1999, México, pp. 245–257 (1999)

    Google Scholar 

  25. Yáñez-Márquez, C., de León-Santiago, D.J.L., Salgado, J.C.: New V-Alpha-Beta Associative Memories able to Learn and Recall Patterns with Integer Components. Technical Report 210, Blue Series. National Polytechnic Institute. Center for Computing Research, Mé xico (2005)

    Google Scholar 

  26. Sossa, H., Barrón, R., Cuevas, F., Aguilar, C.: Associative Gray Level Pattern Processing Using Binary Decomposition and αβ Memories. Neural Processing Letters 22(1) (2005)

    Google Scholar 

  27. Yáñez-Márquez, C., de Leó n-Santiago, D.J.L., Salgado, J.C.: Applying the New V-Alpha-Beta Associative Memories to Gray Level Images. Technical Report 209, Blue Series. National Polytechnic Institute. Center for Computing Research, México (2005)

    Google Scholar 

  28. Yáñez-Márquez, C., Cruz-Meza, M.E., Sánchez-Garfias, F.A., López-Yáñez, I.: Using Alpha-Beta Associative Memories to Learn and Recall RGB Images. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 828–833. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Román Godínez, I.: Aplicación de los Modelos Asociativos Alfa-Beta a la Bioinformática (In Spanish) MsC Thesis. IPN Centro de Investigación en Computación, México (2007)

    Google Scholar 

  30. Román-Godínez, I., Yáñez-Márquez, C.: Complete Recall on Alpha-Beta Heteroassociative Memory. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS, vol. 4827, pp. 193–202. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  31. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository.University of California, Department of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/mlearn/MLRepository.html

  32. Brunak, S., Engelbrecht, J., Knudsen, S.: Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 220, 49–65 (1991)

    Article  Google Scholar 

  33. Ortega, J.: On the informativeness of the DNA promoter sequences domain theory. Journal of Artificial Intelligence Research 2, 361–367 (1995)

    MATH  Google Scholar 

  34. Baffes, P.T., Mooney, R.J.: Symbolic revision of theories with M-of-N rules. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Chambery, France (1993)

    Google Scholar 

  35. Rampone, S.: Recognition of splice junction on DNA sequences by BRAIN learning algorithm. Bioinformatics 14(8), 676–684 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Godínez, I.R., López-Yáñez, I., Yáñez-Márquez, C. (2009). Classifying Patterns in Bioinformatics Databases by Using Alpha-Beta Associative Memories. In: Sidhu, A.S., Dillon, T.S. (eds) Biomedical Data and Applications. Studies in Computational Intelligence, vol 224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02193-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02193-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02192-3

  • Online ISBN: 978-3-642-02193-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics