Abstract
Positron Emission Tomography (PET) is an important nuclear medicine imaging technique which enhances the effectiveness of diagnosing many diseases. The raw-projection data, i.e. the sinogram, from which the PET is reconstructed, contains a very high level of Poisson noise. The latter complicates the PET image’s interpretation which may lead to erroneous diagnoses. Suitable denoising techniques prior to reconstruction can significantly alleviate the problem. In this paper, we propose filtering the sinogram with a constraint curvature motion diffusion for which we compute the edge stopping function in terms of edge probability under the assumption of contamination by Poison noise. We demonstrate through simulations with images contaminated by Poisson noise that the performance of the proposed method substantially surpasses that of recently published methods, both visually and in terms of statistical measures.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chambolle, A.: An Algorithm for Total Variation Minimization and Applications. JMIV 20, 89–97 (2004)
Chan, T., Li, H., Lysaker, M., Tai, X.C.: Level Set Method for Positron Emission Tomography. International Journal of Biomedical Imaging 2007 (2007)
Comtat, C., Kinahan, P.E., Fessler, J., Beyer, T., Townsend, D.W., Defrise, M., Michel, C.: Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys. Med. Biol. 47, 1–20 (2002)
Demirkaya, O.: Diffusion Filtering of Functional Images using the structural information available in Hyprid imaging modalities. In: IEEE Medical Imaging Symposium, Germany (2008)
Demirkaya, O.: Post-reconstruction filtering of positron emission tomography whole-body emission images and attenuation maps using nonlinear diffusion filtering. Acad. Radiol. 11, 1105–1114 (2004)
Demirkaya, O.: Anisotropic diffusion filtering of PET attenuation data to improve emission images. Physics in Medicine Biology 47(20), 271–278 (2002)
Didas, S., Weickert, J.: Combining Curvature Motion and Edge-Preserving Denoising. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 568–579. Springer, Heidelberg (2007)
Hudson, M., Larkin, R.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imag. 13(4), 601–609 (1994)
Happonen, A.P., Koskinen, M.O.: Experimental Investigation of Angular Stackgram Filtering for Noise Reduction of SPECT Projection Data: Study with Linear and Nonlinear Filters. International Journal of Biomedical Imaging 2007 (2007)
Jonsson, E., Huang, S.C., Chan, T.: Total Variation Regularization in Positron Emission Tomography. UCLA, Tech. Rep. no. 48 (1998)
Kak, C.A., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, Los Alamitos (1999)
Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematic Programming, Series A 103, 127–152 (2005)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)
Padfield, D.R., Manjeshwar, R.: Adaptive conductance filtering for spatially varying noise in PET images. Progress in biomedical optics and imaging 7(3) no. 30 (2006)
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)
Pizurica, A., Vanhamel, I., Sahli, H., Philips, W., Katartzis, A.: A Bayesian formulation of edge-stopping functions in non-linear diffusion. IEEE Signal Processing Letters 13(8), 501–504 (2006)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Rudin, L.I., Osher, S.: Feature-oriented image enhancement with shock filters. Technical Report, Department of Computer Science, California Institute of Technology (1989)
Sapiro, G.: Geometric partial differential equations and image analysis. University Press, Cambridge (2001)
Sumengen, B., Manjunath, B.S.: Edgeflow-driven Variational Image Segmentation: Theory and Performance Evaluation. Technical Report, Department of Electrical and Computer Engineering University of California, Santa Barbara (2006)
Turkheimer, F.E., Boussion, N., Anderson, A.N., Pavese, N., Piccini, P., Visvikis, D.: PET Image Denoising Using a Synergistic Multiresolution Analysis of Structural (MRI/CT) and Functional Datasets. The Journal of nuclear medicine 49, 657–666 (2008)
Vanhamel, I., Mihai, C., Sahli, H., Katartzis, A., Pratikakis, I.: Scale Selection for Compact Scale-Space Representation of Vector-Valued Images. International Journal of Computer Vision 4485 (2008)
Vanhamel, I.: Vector valued nonlinear diffusion and its application to image segmentation Ph.D. Thesis, Vrije Universiteit Brussel, Faculty of Engineering Sciences, Electronics and Informatics (ETRO) (2006)
Wang, Y., Zhou, H.: Total Variation Wavelet-Based Medical Image Denoising. International Journal of Biomedical Imaging 2006 (2006)
Wang, W.: Anisotropic Diffusion Filtering for Reconstruction of Poisson Noisy Sinograms. Journal of Communication and Computer 2(11), 16–23 (2005)
Weickert, J.: Anisotropic diffusion in image processing. ECMI Series. Teubner-Verlag, Stuttgart (1998)
Weiss, P., Aubert, G., Blanc-Fraud, L.: Efficient schemes for total variation minimization under constraints in image processing. Technical Report 6260, INRIA (2007)
Zhu, H., Shu, H., Zhou, J., Bao, X., Luo, L.: Bayesian algorithms for PET image reconstruction with mean curvature and Gauss curvature diffusion regularizations. Computers in Biology and Medicine 37(6), 793–804 (2007)
Zhu, H., Shu, H., Zhou, J., Toumoulin, C., Luo, L.: Image reconstruction for positron emission tomography using fuzzy nonlinear anisotropic diffusion penalty. Med. Biol. Eng. Comput. 44(11), 983–997 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alrefaya, M., Sahli, H., Vanhamel, I., Hao, D.N. (2009). A Nonlinear Probabilistic Curvature Motion Filter for Positron Emission Tomography Images. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-02256-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02255-5
Online ISBN: 978-3-642-02256-2
eBook Packages: Computer ScienceComputer Science (R0)