Abstract
Matrix fields are important in many applications since they are the adequate means to describe anisotropic behaviour in image processing models and physical measurements. A prominent example is diffusion tensor magnetic resonance imaging (DT-MRI) which is a medical imaging technique useful for analysing the fibre structure in the brain. Recently, morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images have been extended to three dimensional fields of symmetric positive definite matrices.
In this article we propose a novel method to incorporate adaptivity into the matrix-valued, PDE-driven dilation process. The approach uses a structure tensor concept for matrix data to steer anisotropic morphological evolution in a way that enhances and completes line-like structures in matrix fields. Numerical experiments performed on synthetic and real-world data confirm the gap-closing and line-completing qualities of the proposed method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)
Arehart, A.B., Vincent, L., Kimia, B.B.: Mathematical morphology: The Hamilton–Jacobi connection. In: Proc. Fourth International Conference on Computer Vision, Berlin, pp. 215–219. IEEE Computer Society Press, Los Alamitos (1993)
Bigün, J.: Vision with Direction. Springer, Berlin (2006)
Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(8), 775–790 (1991)
Breuß, M., Burgeth, B., Weickert, J.: Anisotropic continuous-scale morphology. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 515–522. Springer, Heidelberg (2007)
Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Transactions on Signal Processing 42, 3377–3386 (1994)
Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Image and Vision Computing 24(1), 41–55 (2006)
Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for tensor data: Ordering versus PDE-based approach. Image and Vision Computing 25(4), 496–511 (2007)
Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to diffusion filtering of matrix-fields. Computing 81, 179–197 (2007)
Burgeth, B., Didas, S., Weickert, J.: A general structure tensor concept and coherence-enhancing diffusion filtering for matrix fields. Technical Report 197, Department of Mathematics, Saarland University, Saarbrücken, Germany (July 2007); to appear in: Laidlaw, D., Weickert, J. (eds.): Visualization and Processing of Tensor Fields. Springer, Heidelberg (2009)
Chefd’Hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Constrained flows of matrix-valued functions: Application to diffusion tensor regularization. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 251–265. Springer, Heidelberg (2002)
Di Zenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics and Image Processing 33, 116–125 (1986)
Feddern, C., Weickert, J., Burgeth, B., Welk, M.: Curvature-driven PDE methods for matrix-valued images. International Journal of Computer Vision 69(1), 91–103 (2006)
Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, June 1987, pp. 281–305 (1987)
Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological operators for image sequences. Computer Vision and Image Understanding 62, 326–346 (1995)
Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.): Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 18. Kluwer, Dordrecht (2000)
Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)
Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.): Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 12. Kluwer, Dordrecht (1998)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)
Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognition 7, 53–58 (1975)
Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Image and Vision Computing 25(4), 395–404 (2007)
Louverdis, G., Vardavoulia, M.I., Andreadis, I., Tsalides, P.: A new approach to morphological color image processing. Pattern Recognition 35, 1733–1741 (2002)
Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)
Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)
Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2002)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)
Rao, A.R., Schunck, B.G.: Computing oriented texture fields. CVGIP: Graphical Models and Image Processing 53, 157–185 (1991)
Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis 29, 867–884 (1992)
Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., Bruckstein, A.M.: Implementing continuous-scale morphology via curve evolution. Pattern Recognition 26, 1363–1372 (1993)
Schultz, T., Burgeth, B., Weickert, J.: Flexible segmentation and smoothing of DT-MRI fields through a customizable structure tensor. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 455–464. Springer, Heidelberg (2006)
Serra, J.: Echantillonnage et estimation des phénomènes de transition minier. PhD thesis, University of Nancy, France (1967)
Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)
Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)
Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Berlin (2003)
van den Boomgaard, R.: Mathematical Morphology: Extensions Towards Computer Vision. PhD thesis, University of Amsterdam, The Netherlands (1992)
Weickert, J.: Coherence-enhancing diffusion of colour images. In: Sanfeliu, A., Villanueva, J.J., Vitrià, J. (eds.) Proc. Seventh National Symposium on Pattern Recognition and Image Analysis, Barcelona, Spain, April 1997, vol. 1, pp. 239–244 (1997)
Weickert, J.: Coherence-enhancing diffusion filtering. International Journal of Computer Vision 31(2/3), 111–127 (1999)
Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images. In: Nashed, M.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 251–268. AMS, Providence (2002)
Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields. Springer, Berlin (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burgeth, B., Breuß, M., Pizarro, L., Weickert, J. (2009). PDE-Driven Adaptive Morphology for Matrix Fields. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-02256-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02255-5
Online ISBN: 978-3-642-02256-2
eBook Packages: Computer ScienceComputer Science (R0)