Skip to main content

Edge-Enhanced Image Reconstruction Using (TV) Total Variation and Bregman Refinement

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Abstract

We propose a novel image resolution enhancement method for multidimensional images based on a variational approach. Given an appropriate down-sampling operator, the reconstruction problem is posed using a deconvolution model under the assumption of Gaussian noise. In order to preserve edges in the image, we regularize the optimization problem by the norm of the total variation of the image. Additionally, we propose a new edge-preserving operator that emphasizes and even enhances edges during the up-sampling and decimation of the image. Furthermore, we also propose the use of the Bregman iterative refinement procedure for the recovery of higher order information from the image. This is coarse to fine approach for recovering finer scales in the image first, followed by the noise. This method is demonstrated on a variety of low-resolution, natural images as well as 3D anisotropic brain MRI images. The edge enhanced reconstruction is shown to yield significant improvement in resolution, especially preserving important edges containing anatomical information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. and Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Capel, D., Zisserman, A.: Super-resolution from multiple views using learnt image models. In: CVPR, vol. 2, pp. 627–634 (2001)

    Google Scholar 

  3. Carmi, E., Liu, S., Alon, N., Fiat, A., Fiat, D.: Resolution enhancement in MRI. Magnetic Resonance Imaging 24(2), 133–154 (2006)

    Article  Google Scholar 

  4. Chaudhuri, S., Joshi, M.: Motion-Free Super-Resolution. Springer, New York (2005)

    MATH  Google Scholar 

  5. Elad, M., Feuer, A.: Restoration of a single super-resolution image from several blurred,noisy, and undersampled measured images. IEEE Tran. Image Processing 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  6. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22(2), 56–65 (2002)

    Article  Google Scholar 

  7. Greenspan, H., Oz, G., Kiryati, N., Peled, S.: MRI inter-slice reconstruction. Magnetic Resonance Imaging 20, 437–446 (2002)

    Article  MATH  Google Scholar 

  8. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graphical Models and Image Processing 53(3), 231–239 (1991)

    Google Scholar 

  9. Kornprobst, P., Peeters, R., Nikolova, M., Deriche, R., Ng, M., Van Hecke, P.: A superresolution framework for fMRI sequences and its impact on resulting activation maps. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 117–125. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Osher, S.J., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for Total Variation-based image restoration. Multiscale Modeling and Simulation 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rudin, L.I., Osher, S.J., Fatemi, E.: Nonlinear Total Variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Startk, H., Oskoui, P.: High-resolution image recovery from image-plane arrays, using convex projections. Journal of the Optical Society of America 6, 1715–1726 (1989)

    Article  Google Scholar 

  13. Tsai, R.Y., Huang, T.S.: Multi-frame image restoration and registration. In: Advances in Computer Vision and Image Processing, pp. 317–339 (1984)

    Google Scholar 

  14. Marquina, A., Osher, S.J.: Image super-resolution by TV-regularization and Bregman iteration. Journal of Scientific Computing 37(3), 367–382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joshi, S.H., Marquina, A., Osher, S.J., Dinov, I., Van Horn, J.D., Toga, A.W. (2009). Edge-Enhanced Image Reconstruction Using (TV) Total Variation and Bregman Refinement. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics