Skip to main content

An Edge-Preserving Multilevel Method for Deblurring, Denoising, and Segmentation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

We present a fast edge-preserving cascadic multilevel image restoration method for reducing blur and noise in contaminated images. The method also can be applied to segmentation. Our multilevel method blends linear algebra and partial differential equation techniques. Regularization is achieved by truncated iteration on each level. Prolongation is carried out by nonlinear edge-preserving and noise-reducing operators. A thresholding updating technique is shown to reduce “ringing” artifacts. Our algorithm combines deblurring, denoising, and segmentation within a single framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buades, A., Coll, B., Morel, J.M.: The staircasing effect in neighborhood filters and its solution. IEEE Trans. Image Processing 15, 1499–1505 (2006)

    Article  Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  3. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  4. Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Longman, Essex (1995)

    MATH  Google Scholar 

  5. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  6. Hansen, P.C.: Regularization tools, version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 430–436 (2005)

    Google Scholar 

  8. Morigi, S., Reichel, L., Sgallari, F., Shyshkov, A.: Cascadic multiresolution methods for image deblurring. SIAM J. Imaging Sci. 1, 51–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ng, M.K., Chan, R.H., Tang, W.-C.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Reichel, L., Shyshkov, A.: Cascadic multilevel methods for ill-posed problems. J. Comput. Appl. Math. (in press)

    Google Scholar 

  11. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Osher, S., Sethian, J.A.: Fronts propagating with curvaturedependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  15. Welk, M., Theis, D., Brox, T., Weickert, J.: PDE-based deconvolution with forward-backward diffusivities and diffusion tensors. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 585–597. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Weickert, J., Romeny, B.M.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morigi, S., Reichel, L., Sgallari, F. (2009). An Edge-Preserving Multilevel Method for Deblurring, Denoising, and Segmentation. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics