Skip to main content

Sparsity Regularization for Radon Measures

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

In this paper we establish a regularization method for Radon measures. Motivated from sparse L 1 regularization we introduce a new regularization functional for the Radon norm, whose properties are then analyzed. We, furthermore, show well-posedness of Radon measure based sparsity regularization. Finally we present numerical examples along with the underlying algorithmic and implementation details. We shall, here, see that the number of iterations turn out of utmost importance when it comes to obtain reliable reconstructions of sparse data with varying intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bredies, K., Lorenz, D.: Iterated hard shrinkage for minimization problems with sparsity constraints. SIAM J. Sci. Comput. 30(2), 657–683 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Combettes, P.L., Pesquet, J.-C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM J. Optim. 18(4), 1351–1376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (electronic) (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 96. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  7. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I., Fornasier, M., Loris, I.: Accelerated projected gradient methods for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. (to appear) (2008)

    Google Scholar 

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process 1(4), 586–598 (2007)

    Article  Google Scholar 

  11. Griesse, R., Lorenz, D.: A semismooth Newton method for Tikhonov functionals with sparsity constraints. Inverse Probl. 24(3), 035007, 19 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ramlau, R., Teschke, G.: A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints. Numer. Math. 104(2), 177–203 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2008)

    MATH  Google Scholar 

  14. Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–1051 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zelinski, A.C., Wald, L.L., Setsompop, K., Goyal, V.K., Adalsteinsson, E.: Sparsity-enforced slice-selective MRI RF excitation pulse design. IEEE Trans. Med. Imag. 27, 1213–1229 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scherzer, O., Walch, B. (2009). Sparsity Regularization for Radon Measures. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics