Abstract
In this paper we establish a regularization method for Radon measures. Motivated from sparse L 1 regularization we introduce a new regularization functional for the Radon norm, whose properties are then analyzed. We, furthermore, show well-posedness of Radon measure based sparsity regularization. Finally we present numerical examples along with the underlying algorithmic and implementation details. We shall, here, see that the number of iterations turn out of utmost importance when it comes to obtain reliable reconstructions of sparse data with varying intensities.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Bredies, K., Lorenz, D.: Iterated hard shrinkage for minimization problems with sparsity constraints. SIAM J. Sci. Comput. 30(2), 657–683 (2008)
Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
Combettes, P.L., Pesquet, J.-C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM J. Optim. 18(4), 1351–1376 (2007)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (electronic) (2005)
Conway, J.B.: A Course in Functional Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 96. Springer, Heidelberg (1990)
Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)
Daubechies, I., Fornasier, M., Loris, I.: Accelerated projected gradient methods for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. (to appear) (2008)
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process 1(4), 586–598 (2007)
Griesse, R., Lorenz, D.: A semismooth Newton method for Tikhonov functionals with sparsity constraints. Inverse Probl. 24(3), 035007, 19 (2008)
Ramlau, R., Teschke, G.: A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints. Numer. Math. 104(2), 177–203 (2006)
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2008)
Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–1051 (2006)
Zelinski, A.C., Wald, L.L., Setsompop, K., Goyal, V.K., Adalsteinsson, E.: Sparsity-enforced slice-selective MRI RF excitation pulse design. IEEE Trans. Med. Imag. 27, 1213–1229 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Scherzer, O., Walch, B. (2009). Sparsity Regularization for Radon Measures. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-02256-2_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02255-5
Online ISBN: 978-3-642-02256-2
eBook Packages: Computer ScienceComputer Science (R0)