Abstract
Adding external knowledge improves the results for ill-posed problems. In this paper we present a new multi-level optimization framework for image registration when adding landmark constraints on the transformation. Previous approaches are based on a fixed discretization and lack of allowing for continuous landmark positions that are not on grid points. Our novel approach overcomes these problems such that we can apply multi-level methods which have been proven being crucial to avoid local minima in the course of optimization. Furthermore, for our numerical method we are able to use constraint elimination such that we trace back the landmark constrained problem to a unconstrained optimization leading to an efficient algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Glasbey, C.: A review of image warping methods. Journal of Applied Statistics 25, 155–171 (1998)
Pluim, J., Maintz, J., Viergever, M.: Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22, 986–1004 (1999)
Hajnal, J., Hawkes, D., Hill, D.: Medical Image Registration. CRC Press, Boca Raton (2001)
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)
Goshtasby, A.A.: 2-D and 3-D Image Registration. Wiley Press, New York (2005)
Joshi, A., Shattuck, D., Thompson, P.: Brain image registration using cortically constrained harmonic mappings. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 359–371. Springer, Heidelberg (2007)
Grady, L.: A lattice-preserving multigrid method for solving the inhomogeneous poisson equations used in image analysis. In: Forsyth, D.A., Torr, P.H.S., Zisserman, A. (eds.) Scale Space and Variational Methods in Computer Vision, SSVM, ECCV (2008)
Koestler, H.: A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision. Ph.d. dissertation, University of Erlangen, Netherland (2008)
Keller, S., Lauze, F., Nielsen, M.: Motion compensated video super resolution. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 801–812. Springer, Heidelberg (2007)
Hadamard, J.: Sur les problmes aux drives partielles et leur signification physique, pp. 49–52. Princeton University Bulletin, Princeton (1902)
Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. Computer Vision 45(3), 245–264 (2001)
Hinterberger, W., Scherzer, O., Schnörr, C., Weickert, J.: Analysis of optical flow models in the framework of calculus of variations. Num. Funct. Anal. Opt. 23, 69–82 (2002)
Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM Appl. Math. 64(2), 668–687 (2004)
Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)
Maurer, C.R., Fitzpatrick, J.M.: A Review of Medical Image Registration. In: Interactive Image-Guided Neurosurgery. In: American Association of Neurological Surgeons, Park Ridge, IL, pp. 17–44 (1993)
Rohr, K.: Landmark-based Image Analysis. Computational Imaging and Vision. Kluwer Academic Publishers, Dordrecht (2001)
Fischer, B., Modersitzki, J.: Combining landmark and intensity driven registrations. PAMM 3, 32–35 (2003)
Ashburner, J., Friston, K.: Spatial normalization using basis functions. In: Frackowiak, R., Friston, K., Frith, C., Dolan, R., Friston, K., Price, C., Zeki, S., Ashburner, J., Penny, W. (eds.) Human Brain Function, 2nd edn. Academic Press, London (2003)
Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)
Collignon, A., Vandermeulen, A., Suetens, P., Marchal, G.: 3D multi-modality medical image registration based on information theory. Computational Imaging and Vision 3, 263–274 (1995)
Viola, P.A.: Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology (1995)
Clarenz, U., Droske, M., Rumpf, M.: Towards fast non–rigid registration. In: Inverse Problems, Image Analysis and Medical Imaging, AMS Special Session Interaction of Inverse Problems and Image Analysis, vol. 313, pp. 67–84. AMS (2002)
Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. Methods of Information in Medicine 46(3), 292–299 (2007)
Fischer, B., Modersitzki, J.: Fast curvature based registration of MR-mammography images. In: Meiler, M., et al. (eds.) Bildverarbeitung für die Medizin, pp. 139–143. Springer, Heidelberg (2002)
Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra and its Applications 380, 107–124 (2004)
Light, W.A.: Variational methods for interpolation, particularly by radial basis functions. In: Griffiths, D., Watson, G. (eds.) Numerical Analysis 1995, pp. 94–106. Longmans, London (1996)
Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM J. Sci. Comput. 27(5), 1594–1607 (2006)
Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (2000)
Barrett, R., Berry, M., Chan, T.F., Demmel, J.W., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)
Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, London (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haber, E., Heldmann, S., Modersitzki, J. (2009). A Scale-Space Approach to Landmark Constrained Image Registration. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-02256-2_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02255-5
Online ISBN: 978-3-642-02256-2
eBook Packages: Computer ScienceComputer Science (R0)