Skip to main content

A Scale-Space Approach to Landmark Constrained Image Registration

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

Adding external knowledge improves the results for ill-posed problems. In this paper we present a new multi-level optimization framework for image registration when adding landmark constraints on the transformation. Previous approaches are based on a fixed discretization and lack of allowing for continuous landmark positions that are not on grid points. Our novel approach overcomes these problems such that we can apply multi-level methods which have been proven being crucial to avoid local minima in the course of optimization. Furthermore, for our numerical method we are able to use constraint elimination such that we trace back the landmark constrained problem to a unconstrained optimization leading to an efficient algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Glasbey, C.: A review of image warping methods. Journal of Applied Statistics 25, 155–171 (1998)

    Article  MATH  Google Scholar 

  2. Pluim, J., Maintz, J., Viergever, M.: Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22, 986–1004 (1999)

    Article  Google Scholar 

  3. Hajnal, J., Hawkes, D., Hill, D.: Medical Image Registration. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  4. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  5. Goshtasby, A.A.: 2-D and 3-D Image Registration. Wiley Press, New York (2005)

    Google Scholar 

  6. Joshi, A., Shattuck, D., Thompson, P.: Brain image registration using cortically constrained harmonic mappings. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 359–371. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Grady, L.: A lattice-preserving multigrid method for solving the inhomogeneous poisson equations used in image analysis. In: Forsyth, D.A., Torr, P.H.S., Zisserman, A. (eds.) Scale Space and Variational Methods in Computer Vision, SSVM, ECCV (2008)

    Google Scholar 

  8. Koestler, H.: A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision. Ph.d. dissertation, University of Erlangen, Netherland (2008)

    Google Scholar 

  9. Keller, S., Lauze, F., Nielsen, M.: Motion compensated video super resolution. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 801–812. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Hadamard, J.: Sur les problmes aux drives partielles et leur signification physique, pp. 49–52. Princeton University Bulletin, Princeton (1902)

    Google Scholar 

  11. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. Computer Vision 45(3), 245–264 (2001)

    Article  MATH  Google Scholar 

  12. Hinterberger, W., Scherzer, O., Schnörr, C., Weickert, J.: Analysis of optical flow models in the framework of calculus of variations. Num. Funct. Anal. Opt. 23, 69–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM Appl. Math. 64(2), 668–687 (2004)

    Article  MATH  Google Scholar 

  14. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  15. Maurer, C.R., Fitzpatrick, J.M.: A Review of Medical Image Registration. In: Interactive Image-Guided Neurosurgery. In: American Association of Neurological Surgeons, Park Ridge, IL, pp. 17–44 (1993)

    Google Scholar 

  16. Rohr, K.: Landmark-based Image Analysis. Computational Imaging and Vision. Kluwer Academic Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  17. Fischer, B., Modersitzki, J.: Combining landmark and intensity driven registrations. PAMM 3, 32–35 (2003)

    Article  MATH  Google Scholar 

  18. Ashburner, J., Friston, K.: Spatial normalization using basis functions. In: Frackowiak, R., Friston, K., Frith, C., Dolan, R., Friston, K., Price, C., Zeki, S., Ashburner, J., Penny, W. (eds.) Human Brain Function, 2nd edn. Academic Press, London (2003)

    Google Scholar 

  19. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Collignon, A., Vandermeulen, A., Suetens, P., Marchal, G.: 3D multi-modality medical image registration based on information theory. Computational Imaging and Vision 3, 263–274 (1995)

    MATH  Google Scholar 

  21. Viola, P.A.: Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  22. Clarenz, U., Droske, M., Rumpf, M.: Towards fast non–rigid registration. In: Inverse Problems, Image Analysis and Medical Imaging, AMS Special Session Interaction of Inverse Problems and Image Analysis, vol. 313, pp. 67–84. AMS (2002)

    Google Scholar 

  23. Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. Methods of Information in Medicine 46(3), 292–299 (2007)

    Google Scholar 

  24. Fischer, B., Modersitzki, J.: Fast curvature based registration of MR-mammography images. In: Meiler, M., et al. (eds.) Bildverarbeitung für die Medizin, pp. 139–143. Springer, Heidelberg (2002)

    Google Scholar 

  25. Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra and its Applications 380, 107–124 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Light, W.A.: Variational methods for interpolation, particularly by radial basis functions. In: Griffiths, D., Watson, G. (eds.) Numerical Analysis 1995, pp. 94–106. Longmans, London (1996)

    Google Scholar 

  27. Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM J. Sci. Comput. 27(5), 1594–1607 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (2000)

    MATH  Google Scholar 

  29. Barrett, R., Berry, M., Chan, T.F., Demmel, J.W., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  30. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haber, E., Heldmann, S., Modersitzki, J. (2009). A Scale-Space Approach to Landmark Constrained Image Registration. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics