Skip to main content

An Elasticity Approach to Principal Modes of Shape Variation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

Concepts from elasticity are applied to analyze modes of variation on shapes in two and three dimensions. This approach represents a physically motivated alternative to shape statistics on a Riemannian shape space, and it robustly treats strong nonlinear geometric variations of the input shapes.

To compute a shape average, all input shapes are elastically deformed into the same configuration. That configuration which minimizes the total elastic deformation energy is defined as the average shape. Each of the deformations from one of the shapes onto the shape average induces a boundary stress. Small amplitude stimulation of these stresses leads to displacements which reflect the impact of every single input shape on the average. To extract the dominant modes of variation, a PCA is performed on this set of displacements.

To make the approach computationally tractable, a relaxed formulation is proposed, and sharp contours are approximated via phase fields. For the spatial discretization of the resulting model, piecewise multilinear finite elements are applied. Applications in 2D and in 3D demonstrate the qualitative properties of the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  2. Chalmond, B., Girard, S.C.: Nonlinear modeling of scattered multivariate data and its application to shape change. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 422–432 (1999)

    Article  Google Scholar 

  3. Faugeras, O., Adde, G., Charpiat, G., Chefd’Hotel, C., Clerc, M., Deneux, T., Deriche, R., Hermosillo, G., Keriven, R., Kornprobst, P., Kybic, J., Lenglet, C., Lopez-Perez, L., Papadopoulo, T., Pons, J.P., Segonne, F., Thirion, B., Tschumperlé, D., Viéville, T., Wotawa, N.: Variational, geometric, and statistical methods for modeling brain anatomy and function. NeuroImage 23, S46–S55 (2004)

    Google Scholar 

  4. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics 5(1), 1–58 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002 (2002)

    Google Scholar 

  7. Dambreville, S., Rathi, Y., Tannenbaum, A.: A shape-based approach to robust image segmentation. In: Campilho, A., Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 173–183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognition 36, 1929–1943 (2003)

    Article  MATH  Google Scholar 

  9. Rathi, Y., Dambreville, S., Tannenbaum, A.: Comparative analysis of kernel methods for statistical shape learning. In: Beichel, R., Sonka, M. (eds.) CVAMIA 2006. LNCS, vol. 4241, pp. 96–107. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Miller, M.I., Younes, L.: Group actions, homeomorphisms and matching: a general framework. International Journal of Computer Vision 41(1-2), 61–84 (2001)

    Article  MATH  Google Scholar 

  12. Miller, M., Trouvé, A., Younes, L.: On the metrics and euler-lagrange equations of computational anatomy. Annual Review of Biomedical Enginieering 4, 375–405 (2002)

    Article  Google Scholar 

  13. Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. Forschungsschwerpunkt S92, Idustrial Geometry 71, Universität Innsbruck (2008)

    Google Scholar 

  14. Rumpf, M., Wirth, B.: A nonlinear elastic shape averaging approach. SIAM Journal on Imaging Sciences (2008) (submitted)

    Google Scholar 

  15. Ciarlet, P.G.: Three-dimensional elasticity. Elsevier Science Publishers B. V., Amsterdam (1988)

    MATH  Google Scholar 

  16. Baker, T.: Three dimensional mesh generation by triangulation of arbitrary point sets. In: Computational Fluid Dynamics Conference, 8th, Honolulu, HI, June 9-11, 1987, vol. 1124-CP, pp. 255–271 (1987)

    Google Scholar 

  17. Srivastava, A., Jain, A., Joshi, S., Kaziska, D.: Statistical shape models using elastic-string representations. In: Narayanan, P. (ed.) ACCV 2006. LNCS, vol. 3851, pp. 612–621. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karcher, H.: Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics 30(5), 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Bollettino dell’Unione Matematica Italiana, Sezione B 6(7), 105–123 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure Applied Mathematics 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rumpf, M., Wirth, B. (2009). An Elasticity Approach to Principal Modes of Shape Variation. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics