Skip to main content

Fast Shape from Shading for Phong-Type Surfaces

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

  • 3054 Accesses

Abstract

Shape from Shading (SfS) is one of the oldest problems in image analysis that is modelled by partial differential equations (PDEs). The goal of SfS is to compute from a single 2-D image a reconstruction of the depicted 3-D scene. To this end, the brightness variation in the image and the knowledge of illumination conditions are used. While the quality of models has reached maturity, there is still the need for efficient numerical methods that enable to compute sophisticated SfS processes for large images in reasonable time. In this paper we address this problem. We consider a so-called Fast Marching (FM) scheme,which is one of the most efficient numerical approaches available. However, the FM scheme is not trivial to use for modern non-linear SfS models. We show how this is done for a recent SfS model incorporating the non-Lambertian reflectance model of Phong. Numerical experiments demonstrate that – without compromising quality – our FM scheme is two orders of magnitude faster than standard methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Horn, B.K.P., Brooks, M.J.: Shape from Shading. Artificial Intelligence Series. MIT Press, Cambridge (1989)

    MATH  Google Scholar 

  2. Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape from shading: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(8), 690–706 (1999)

    Article  MATH  Google Scholar 

  3. Tankus, A., Sochen, N., Yeshurun, Y.: A new perspective [on] shape-from-shading. In: Proc. Ninth International Conference on Computer Vision, vol. 2, pp. 862–869. IEEE Computer Society Press, Nice (2003)

    Chapter  Google Scholar 

  4. Tankus, A., Sochen, N., Yeshurun, Y.: Perspective shape-from-shading by fast marching. In: Proc. 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 43–49. IEEE Computer Society Press, Washington (2004)

    Google Scholar 

  5. Prados, E., Faugeras, O.: Shape from shading: A well-posed problem? In: Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 870–877. IEEE Computer Society Press, San Diego (2005)

    Google Scholar 

  6. Ahmed, A., Farag, A.: A new formulation for shape from shading for non-Lambertian surfaces. In: Proc. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 17–22. IEEE Computer Society Press, New York (2006)

    Google Scholar 

  7. Oren, M., Nayar, S.: Generalization of the Lambertian model and implications for machine vision. Vogel-International Journal of Computer Vision 14(3), 227–251 (1995)

    Article  Google Scholar 

  8. Vogel, O., Breuß, M., Weickert, J.: Perspective shape from shading with non-Lambertian reflectance. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 517–526. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Phong, B.T.: Illumination for computer-generated pictures. Communications of the ACM 18(6), 311–317 (1975)

    Article  Google Scholar 

  10. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  12. Kimmel, R., Sethian, J.A.: Optimal algorithm for shape from shading and path planning. Vogel-Journal of Mathematical Imaging and Vision 14(3), 237–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yuen, S.Y., Tsui, Y.Y., Chow, C.K.: Fast marching method for shape from shading under perspective projection. In: Proceedings of the 2nd IASTED International Conference on Visualization, Imaging and Image Processing, Malaga, Spain, September 2002, pp. 584–589 (2002)

    Google Scholar 

  14. Tankus, A., Sochen, N., Yeshurun, Y.: Shape-from-shading under perspective projection. International Journal of Computer Vision 63(1), 21–43 (2005)

    Article  Google Scholar 

  15. Prados, E., Soatto, S.: Fast marching method for generic shape from shading. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 320–331. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Yuen, S.Y., Tsui, Y.Y., Chow, C.K.: A fast marching formulation of perspective shape from shading under frontal illumination. Pattern Recognition Letters 28, 806–824 (2007)

    Article  Google Scholar 

  17. Cristiani, E., Falcone, M., Seghini, A.: Some remarks on perspective shape-from-shading models. In: Sgallari, F., Murli, F., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 276–287. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Vogel, O., Breuß, M., Weickert, J.: A direct numerical approach to perspective shape-from-shading. In: Lensch, H., Rosenhahn, B., Seidel, H.P., Slusallek, P., Weickert, J. (eds.) Vision, Modeling, and Visualization, pp. 91–100. AKA, Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vogel, O., Breuß, M., Leichtweis, T., Weickert, J. (2009). Fast Shape from Shading for Phong-Type Surfaces. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics