Abstract
In this paper, we investigate a new Gradient-Vector-Flow (GVF)([38])-inspired static external force field for active contour models, deriving from the edge map of a given image and allowing to increase the capture range. Contrary to prior related works, we reduce the number of unknowns to a single one v by assuming that the expected vector field is the gradient field of a scalar function. The model is phrased in terms of a functional minimization problem comprising a data fidelity term and a regularizer based on the super norm of Dv. The minimization is achieved by solving a second order singular degenerate parabolic equation. A comparison principle as well as the existence/uniqueness of a viscosity solution together with regularity results are established. Experimental results for image segmentation with details of the algorithm are also presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aronsson, G.: Minimization problems for the functional sup x F(x,f(x),f′(x)). Arkiv für Mate. 6, 33–53 (1965)
Aronsson, G.: Minimization problems for the functional sup x F(x,f(x),f′(x)). II. Arkiv für Mate. 6, 409–431 (1966)
Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Arkiv für Mate. 6(6), 551–561 (1967)
Aronsson, G.: On the partial differential equation \(u_{x}^2 u_{xx}+2u_{x} u_{y} u_{xy}+u_{y}^2 u_{yy}=0\). Arkiv für Mate. 7, 395–425 (1968)
Aronsson, G., Crandall, M., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. (N.S.) 41, 439–505 (2004)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the calculus of Variations. Springer, Heidelberg (2002)
Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Heidelberg (1994)
Barles, G.: Solutions de viscosité et équations elliptiques du deuxième ordre. Cours de DEA (1997)
Barles, G., Busca, J.: Existence and comparaison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Partial Differential Equations 26, 2323–2337 (2001)
Barron, E.N., Evans, L.C., Jensen, R.: The infinity Laplacian, Aronsson’s equation and their generalizations. Trans. Amer. Math. Soc. 360(1), 77–101 (2008)
Brézis, H.: Analyse fonctionnelle. Dunod (1999)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)
Carlsson, S.: Sketch based coding of grey level images. Signal Process. 15, 57–83 (1988)
Casas, J.R.: Image compression based on perceptual coding techniques. Ph.D. dissertation, Dept. Signal Theory Commun., UPC, Barcelona, Spain (1996)
Caselles, V., Catté, F., Coll, C., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. Int. J. Comput. Vision 22(1), 61–87 (1997)
Caselles, V., Morel, J.M., Sbert, C.: An Axiomatic Approach to Image Interpolation. IEEE Trans. Image Process. 7(3), 376–386 (1998)
Cohen, L.D.: On Active Contour Models and Balloons. CVGIP: Image Understanding 53(2), 211–218 (1989)
Cong, G., Esser, M., Parvin, B., Bebis, G.: Shape Metamorphism Using p-Laplacian Equation. In: ICPR, vol. 4, pp. 15–18 (2004)
Crandall, M.G.: A visit with the ∞-Laplace equation. Preprint, Notes from a CIME course (2005)
Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27, 1–67 (1992)
Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi Equations. Trans. Amer. Math. Soc. 277, 1–42 (1983)
Crandall, M.G., Lions, P.L.: On existence and uniqueness of solutions of Hamilton-Jacobi equations. Non-Linear Anal. 10, 353–370 (1986)
Elion, C., Vese, L.A.: An image decomposition model using the total variation and the infinity Laplacian. In: Proceedings SPIE, vol. 6498, pp. 64980W-1–64980W-10 (2007)
Forcadel, N.: Dislocations dynamics with a mean curvature term: short time existence and uniqueness. Differential and Integral Equations 21(3-4), 285–304 (2008)
Ishii, H.: Existence and uniqueness of solutions of Hamilton-Jacobi equations. Funkcial. Ekvac. 29, 167–188 (1986)
Ishii, H., Lions, P.L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equations 83, 26–78 (1990)
Jensen, R.: Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient. Arch. Rat. Mech. Anal. 123(1), 51–74 (1993)
Jifeng, N., Chengke, W., Shigang, L., Shuqin, Y.: NGVF: An improved external force field for active contour model. Pattern Recogn. Lett. 28, 58–63 (2007)
Kass, M., Terzopoulos, D., Witkin, A.: Snakes: Active contour models. Int. J. Comput. Vision 1, 321–331 (1988)
Mémoli, F., Sapiro, G., Thompson, P.: Brain and surface warping via minimizing Lipschitz extensions. In: MFCA, International Workshop on Mathematical Foundations of Computational Anatomy (2006)
Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. AMS 22 (2001)
Osher, S., Sethian, J.A.: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient Vector Flow Fast Geodesic Active Contours. In: Proc. IEEE Intl. Conf. Computer Vision, vol. 1, pp. 67–73 (2001)
Prewitt, J.M.S.: Object enhancement and extraction. In: Lipkin, B., Rosenfeld, A. (eds.) Picture Processing and Psychopictorics, pp. 75–149. Academic Press, New York (1970)
Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving interfaces in Computational Geometry. In: Fluid Mechanics, Computer Vision and Material Science. Cambridge University Press, Londres (1999)
Torre, V., Poggio, T.A.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 147–163 (1986)
Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)
Yuille, A.L., Poggio, T.A.: Scaling theorems for zero-crossings. IEEE Trans. Pattern Anal. Mach. Intell. 8, 15–25 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guillot, L., Le Guyader, C. (2009). Extrapolation of Vector Fields Using the Infinity Laplacian and with Applications to Image Segmentation. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-02256-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02255-5
Online ISBN: 978-3-642-02256-2
eBook Packages: Computer ScienceComputer Science (R0)