Skip to main content

A Schrödinger Equation for the Fast Computation of Approximate Euclidean Distance Functions

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

Computational techniques adapted from classical mechanics and used in image analysis run the gamut from Lagrangian action principles to Hamilton-Jacobi field equations: witness the popularity of the fast marching and fast sweeping methods which are essentially fast Hamilton-Jacobi solvers. In sharp contrast, there are very few applications of quantum mechanics inspired computational methods. Given the fact that most of classical mechanics can be obtained as a limiting case of quantum mechanics (as Planck’s constant h tends to zero), this paucity of quantum mechanics inspired methods is surprising. In this work, we derive relationships between nonlinear Hamilton-Jacobi and linear Schrödinger equations for the Euclidean distance function problem (in 1D, 2D and 3D). We then solve the Schrödinger wave equation instead of the corresponding Hamilton-Jacobi equation. We show that the Schrödinger equation has a closed form solution and that this solution can be efficiently computed in O(NlogN), N being the number of grid points. The Euclidean distance can then be recovered from the wave function. Since the wave function is computed for a small but non-zero h, the obtained Euclidean distance function is an approximation. We derive analytic bounds for the error of the approximation and experimentally compare the results of our approach with the exact Euclidean distance function on real and synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Horn, B.K.P.: Robot vision. MIT Press, Cambridge (1986)

    Google Scholar 

  2. Kimmel, R.: Numerical geometry of images: Theory, algorithms, and applications. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  3. Grimson, W.E.L.: An implementation of a computational theory of visual surface interpolation. Computer Vision, Graphics, and Image Processing 22(1), 39–69 (1983)

    Article  MathSciNet  Google Scholar 

  4. Siddiqi, K., Tannenbaum, A., Zucker, S.W.: A Hamiltonian approach to the eikonal equation. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 1–13. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Kao, C.Y., Osher, S.J., Tsai, Y.H.: Fast sweeping methods for static Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis 42(6), 2612–2632 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldstein, H., Poole, C.P., Safko, J.L.: Classical mechanics. Addison-Wesley, Reading (2002)

    MATH  Google Scholar 

  7. Butterfield, J.: On Hamilton-Jacobi theory as a classical root of quantum theory. In: Elitzur, A., Dolev, S., Kolenda, N. (eds.) Quo-Vadis Quantum Mechanics, pp. 239–274. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Griffiths, D.J.: Introduction to quantum mechanics. Addison-Wesley, Reading (2004)

    Google Scholar 

  9. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, H.K.: A fast sweeping method for eikonal equations. Mathematics of Computation 74, 603–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geometry: Algorithms and applications. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  12. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19(90), 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arnold, V.I.: Mathematical methods of classical mechanics. Springer, Heidelberg (1989)

    Book  Google Scholar 

  14. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Government Printing Office, USA (1964)

    MATH  Google Scholar 

  15. Bracewell, R.N.: The Fourier transform and its applications. McGraw-Hill Science and Engineering, New York (1999)

    MATH  Google Scholar 

  16. Hida, Y., Li, H.S., Bailey, D.H.: Quad-double arithmetic: Algorithms, implementation, and application. Technical Report LBNL-46996, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurumoorthy, K.S., Rangarajan, A. (2009). A Schrödinger Equation for the Fast Computation of Approximate Euclidean Distance Functions. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics