Abstract
In this paper, we analyse the retinal population data looking at behaviour. The method is based on creating population subsets using the autocorrelograms of the cells and grouping them according to a minimal Euclidian distance. These subpopulations share functional properties and may be used for data reduction, extracting the relevant information from the code. Information theory (IT) and artificial neural networks (ANNs) have been used to quantify the coding goodness of every subpopulation, showing a strong correlation between both methods. All cells that belonged to a certain subpopulation showed very small variances in the information they conveyed while these values were significantly different across subpopulations, suggesting that the functional separation worked around the capacity of each cell to code different stimuli.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ammermuller, J., Kolb, H.: The organization of the turtle inner retina. I. ON- and OFF-center pathways. J. Comp. Neurol. 358(1), 1–34 (1995)
Ammermuller, J., Weiler, R., Perlman, I.: Short-term effects of dopamine on photoreceptors, luminosity- and chromaticity-horizontal cells in the turtle retina. Vis. Neurosci. 12(3), 403–412 (1995)
Fitzhugh, R.: A Statistical Analyzer for Optic Nerve Messages. J. Gen. Phyosiol. 41, 675–692 (1958)
Rieke, F., et al.: Spikes: Exploring the Neural Code. M. Press, Cambridge (1997)
JGolledge, H.D., et al.: Correlations, feature-binding and population coding in primary visual cortex. Neuroreport 14(7), 1045–1050 (2003)
Warland, D., Reinagel, P., Meister, M.: Decoding Visual Information from a Population of Retinal Ganglion Cells. J. Neurophysiol. 78, 2336–2350 (1997)
Fernández, E., et al.: Population Coding in spike trains of sinultaneosly recorded retinal ganglion cells Information. Brain Res. 887, 222–229 (2000)
Ferrández, J., et al.: A Neural Network Approach for the Analysis of Multineural Recordings in Retinal Ganglion Cells: Towards Population Encoding. In: Mira, J., et al. (eds.) IWANN 1999. LNCS, vol. 1607, pp. 289–298. Springer, Heidelberg (1999)
Normann, R., et al.: High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res. 41, 1261–1275 (2001)
Ortega, G., et al.: Conditioned spikes: a simple and fast method to represent rates and temporal patterns in multielectrode recordings. J. Neurosci. Meth. 133, 135–141 (2004)
Shoham, S., Fellows, M., Normann, R.: Robust, automatic spike sorting using mixtures of multivariate t-distributions. J. Neurosci. Meth. 127, 111–122 (2003)
Bongard, M., Micol, D., Fernández, E.: Nev2lkit: a tool for handling neuronal event files, http://nev2lkit.sourceforge.net/
Bonomini, M.P., Ferrández, J.M., Bolea, J.A., Fernández, E.: RDATA-MEANS: An open source tool for the classification and management of neural ensemble recordings. J. Neurosci. Meth. 148, 137–146 (2005)
Bonomini, M.P., Ferrández, J.M., Fernández, E.: Searching for semantics in the retinal code. Neurocomputing 72, 806–813 (2009)
Shannon, C.: A Mathematical Theory of Communication. Bell sys. Tech. 27, 379–423 (1948)
McClelland, J., Rumelhart, D.: Explorations in Parallel Distributed Processing. M Press, Cambridge (1986)
Borst, A., Theunissen, F.: Information Theory and Neural Coding. Nature Neurosci. 2(11), 947–957 (1999)
Amigo, J.M., et al.: On the number of states of the neuronal sources. Biosystems 68(1), 57–66 (2003)
Panzeri, S., Pola, G., Petersen, R.S.: Coding of sensory signals by neuronal populations: the role of correlated activity. Neuroscientist 9(3), 175–180 (2003)
Pola, G., et al.: An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network 14(1), 35–60 (2003)
McClelland, J., Rumelhart, D.: Explorations in Parallel Distributed Processing. M. Press, Cambridge (1986)
Kang, K., Shapley, R.M., Sompolinsky, H.: Information tuning of populations of neurons in primary visual cortex. J. Neurosci. 24(15), 3726–3735 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonomini, M.P., Ferrández, J.M., Rueda, J., Fernández, E. (2009). Analysis of Retinal Ganglion Cells Population Responses Using Information Theory and Artificial Neural Networks: Towards Functional Cell Identification. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-02264-7_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02263-0
Online ISBN: 978-3-642-02264-7
eBook Packages: Computer ScienceComputer Science (R0)