Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5601))

  • 1075 Accesses

Abstract

In Evolution Strategies (ES) mutation is often considered to be the main variation operator and there has been relatively few attention on the choice of recombination operators. This study seeks to compare advanced recombination operators for ES, including multi-parent weighted recombination. Both the canonical \((\mu{+\atop,} \lambda)-\)ES with mutative self-adaptation and the CMA-ES are considered. The results achieved on scalable (non-)separable test problem indicate that the right choice of recombination has an considerable impact on the performance of the ES. Moreover, the study will provide empirical evidence that weighted multi-parent recombination is a favorable choice for both ES variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold, D.V.: Optimal Weighted Recombination. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 215–237. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Bäck, T.: Evolutionary algorithms in theory and practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  3. Beyer, H.-G.: Toward a Theory of Evolution Strategies: On the Benefit of Sex-the (μ/μ,λ)-Theory. Evolutionary Computation 3(1), 81–111 (1995)

    Article  Google Scholar 

  4. Chen, J.: On Recombination in (μ,λ) Evolution Strategies. Technical Report, LIACS, Leiden (2006)

    Google Scholar 

  5. Deb, K., Beyer, H.-G.: Self-Adaptive Genetic Algorithms with Simulated Binary Crossover. Evolutionary Computation 9(2), 197–221 (2001)

    Article  Google Scholar 

  6. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9(2), 159–195 (2001)

    Article  Google Scholar 

  7. Ostermeier, A., Gawelczyk, A., Hansen, N.: A derandomized approach to self adaptation of evolution strategies. Evolutionary Computation 2(4), 369–380 (1995)

    Article  Google Scholar 

  8. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovac, Hamburg (1997)

    MATH  Google Scholar 

  9. Schönemann, L., Emmerich, M., Preuss, M.: On the extinction of evolutionary algorithm subpopulations on multimodal landscapes. Informatica (Slovenia) 28(4), 345–351 (2004)

    Google Scholar 

  10. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report AND KanGAL Report 2005005, IIT Kanpur, India (2005)

    Google Scholar 

  11. Shang, Y.-W., Qiu, Y.-H.: A Note on the Extended Rosenbrock Function. Evolutionary Computation 14(1), 119–126 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, J., Emmerich, M.T.M., Li, R., Kok, J., Bäck, T. (2009). How to Do Recombination in Evolution Strategies: An Empirical Study. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02264-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02263-0

  • Online ISBN: 978-3-642-02264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics