Abstract
This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the selection of the voxels which present greater overall difference between both modalities (normal and Alzheimer) and also lower dispersion. We measure the dispersion of the intensity values for normals and Alzheimer images by mean of the standard deviation images. The mean value of the intensities of selected voxels is used as feature for different classifiers, including support vector machines with linear kernels, fitting a multivariate normal density to each group and the k-nearest neighbors algorithm. The proposed methodology reaches an accuracy of 92 % in the classification task.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
English, R.J., Childs, J. (eds.): SPECT: Single-Photon Emission Computed Tomography: A Primer. Society of Nuclear Medicine (1996)
Hellman, R.S., Tikofsky, R.S., Collier, B.D., Hoffmann, R.G., Palmer, D.W., Glatt, S., Antuono, P.G., Isitman, A.T., Papke, R.A.: Alzheimer disease: quantitative analysis of I-123-iodoamphetamine SPECT brain imaging. Radiology 172, 183–188 (1989)
Holman, B.L., Johnson, K.A., Gerada, B., Carvalho, P.A., Satlin, A.: The scintigraphic appearance of alzheimer’s disease: A prospective study using Technetium-99m-HMPAO SPECT. Journal of Nuclear Medicine 33(2), 181–185 (1992)
Johnson, K.A., Kijewski, M.F., Becker, J.A., Garada, B., Satlin, A., Holman, B.L.: Quantitative brain SPECT in Alzheimer’s disease and normal aging. Journal of Nuclear Medicine 34(11), 2044–2048 (1993)
Jagust, W., Thisted, R., Devous, M.D., Heertum, R.V., Mayberg, H., Jobst, K., Smith, A.D., Borys, N.: Spect perfusion imaging in the diagnosis of alzheimer’s disease: A clinical-pathologic study. Neurology 56, 950–956 (2001)
McNeill, R., Sare, G.M., Manoharan, M., Testa, H.J., Mann, D.M.A., Neary, D., Snowden, J.S., Varma, A.R.: Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 78(4), 350–355 (2007)
Ramírez, J., Górriz, J.M., Romero, A., Lassl, A., Salas-Gonzalez, D., López, M., Gómez-Río, M., Rodríguez, A.: Computer aided diagnosis of alzheimer type dementia combining support vector machines and discriminant set of features. Information Sciences (2008) (accepted)
Fung, G., Stoeckel, J.: SVM feature selection for classification of SPECT images of Alzheimer’s disease using spatial information. Knowledge and Information Systems 11(2), 243–258 (2007)
Górriz, J.M., Ramírez, J., Lassl, A., Salas-Gonzalez, D., Lang, E.W., Puntonet, C.G., Álvarez, I., López, M., Gómez-Río, M.: Automatic computer aided diagnosis tool using component-based svm. In: Medical Imaging Conference, Dresden. IEEE, Los Alamitos (2008)
Lassl, A., Górriz, J.M., Ramírez, J., Salas-Gonzalez, D., Puntonet, C.G., Lang, E.W.: Clustering approach for the classification of spect images. In: Medical Imaging Conference, Dresden. IEEE, Los Alamitos (2008)
Stoeckel, J., Malandain, G., Migneco, O., Koulibaly, P.M., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of Alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)
Krzanowski, W.J. (ed.): Principles of multivariate analysis: a user’s perspective. Oxford University Press, Inc., New York (1988)
Vapnik, V.: Statistical learning theory. John Wiley and Sons, New York (1998)
Ramírez, J., Górriz, J.M., Gómez-Río, M., Romero, A., Chaves, R., Lassl, A., Rodríguez, A., Puntonet, C.G., Theis, F., Lang, E.: Effective emission tomography image reconstruction algorithms for spect data. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 741–748. Springer, Heidelberg (2008)
Salas-Gonzalez, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G.: Improved gauss-newton optimization methods in affine registration of spect brain images. IET Electronics Letters 44(22), 1291–1292 (2008)
Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta, J.C.: Automated image registration: I. general methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography 22(1), 139–152 (1998)
Ashburner, J., Friston, K.J.: Nonlinear spatial normalization using basis functions. Human Brain Mapping 7(4), 254–266 (1999)
Saxena, P., Pavel, D.G., Quintana, J.C., Horwitz, B.: An automatic threshold-based scaling method for enhancing the usefulness of Tc-HMPAO SPECT in the diagnosis of Alzheimer’s disease. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 623–630. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salas-Gonzalez, D. et al. (2009). Analysis of Brain SPECT Images for the Diagnosis of Alzheimer Disease Using First and Second Order Moments. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-02267-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02266-1
Online ISBN: 978-3-642-02267-8
eBook Packages: Computer ScienceComputer Science (R0)