Abstract
In the Alzheimer’s Disease (AD) diagnosis process, functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians. However, the current evaluation of these images entails a succession of manual reorientations and visual interpretation steps, which attach in some way subjectivity to the diagnostic. In this work, two pattern recognition methods have been applied to SPECT and PET images in order to obtain an objective classifier which is able to determine whether the patient suffers from AD or not. A common feature selection stage is first described, where Principal Component Analysis (PCA) is applied over the data to drastically reduce the dimension of the feature space, followed by the study of neural networks and support vector machines (SVM) classifiers. The achieved accuracy results reach 98.33% and 93.41% for PET and SPECT respectively, which means a significant improvement over the results obtained by the classical Voxels-As-Features (VAF) reference approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stoeckel, J., Malandain, G., Migneco, O., Koulibaly, P.M., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)
Górriz, J.M., Ramírez, J., Lassl, A., Salas-Gonzalez, D., Lang, E.W., Puntonet, C.G., Álvarez, I., López, M., Gómez-Río, M.: Automatic computer aided diagnosis tool using component-based svm. In: 2008 IEEE Nuclear Science Symposium Conference Record, pp. 4392–4395 (2008)
Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., Penny, W.D.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)
Salas-González, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G.: Improved gauss-newton optimization methods in affine registration of SPECT brain images. IET Electronics Letters 44(22), 1291–1292 (2008)
Turk, M., Petland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 13(1), 71–86 (1991)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)
McCulloch, W.S., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Mathematical Biophysics 5, 115–133 (1943)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
López, M. et al. (2009). Support Vector Machines and Neural Networks for the Alzheimer’s Disease Diagnosis Using PCA. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-02267-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02266-1
Online ISBN: 978-3-642-02267-8
eBook Packages: Computer ScienceComputer Science (R0)