Skip to main content

Classification of SPECT Images Using Clustering Techniques Revisited

  • Conference paper
Bioinspired Applications in Artificial and Natural Computation (IWINAC 2009)

Abstract

We present a novel classification method of SPECT images based on clustering for the diagnosis of Alzheimer’s disease. The aims of the clustering approach which is based on Gaussian Mixture Model (GMM) for density estimation, is to automatically select Regions of Interest (ROIs) and to effectively reduce the dimensionality of the problem. The clusters represented by Gaussians are constructed according to a maximum likelihood criterion employing the expectation maximization (EM) algorithm. By considering only the intensity levels inside the clusters, the resulting feature space has a significantly reduced dimensionality with respect to former approaches using the voxel intensities directly as features. With this feature extraction method one avoids the so-called small sample size problem and nonlinear classifiers may be used to distinguish between the brain images of normal and Alzheimer patients. Our results show that for various classifiers the clustering method yields higher accuracy rates than the classification considering all voxel values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (eds.): Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)

    Google Scholar 

  2. Vapnik, V.: Statistical learning theory. John Wiley and Sons, Chichester (1998)

    MATH  Google Scholar 

  3. Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machines for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(11), 1542–1550 (2002)

    Article  Google Scholar 

  4. Ramírez, J., Yélamos, P., Górriz, J.M., Segura, J.C.: Svm-based speech endpoint detection using contextual speech features. Electronics Letters 42(7), 877–879 (2006)

    Article  Google Scholar 

  5. Álvarez, I., Górriz, J.M., Ramírez, J., Salas, D., López, M., Puntonet, C.G., Segovia, F.: Alzheimer’s diagnosis using eigenbrains and support vector machines. IET Electronic Letters 45(1), 165–167 (2009)

    Google Scholar 

  6. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  7. Newman, J., von Cramon, D.Y., Lohmann, G.: Model-based clustering of meta-analytic functional imaging data. NeuroImage 29, 177–192 (2008)

    Google Scholar 

  8. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley and Sons, New York (2000)

    Book  MATH  Google Scholar 

  9. Raudys, S., Duin, R.P.W.: Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recognition Letters 19(5-6), 385–392 (1998)

    Article  MATH  Google Scholar 

  10. Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in Kernel Methods – Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Raudys, S., Jain, A.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)

    Article  Google Scholar 

  13. Stoeckel, J., Malandain, G., Migneco, O., Koulibaly, P.M., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of Alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learn- ing and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Górriz, J.M., Ramírez, J., Lassl, A., Salas-Gonzalez, D., Lang, E.W., Puntonet, C.G., Álvarez, I., López, M., Gómez-Río, M.: Automatic computer aided diagnosis tool using component-based svm. In: 2008 IEEE Nuclear Science Symposium Conference Record, pp. 4392–4395 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Górriz, J.M. et al. (2009). Classification of SPECT Images Using Clustering Techniques Revisited. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02267-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02266-1

  • Online ISBN: 978-3-642-02267-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics