Abstract
We present a novel classification method of SPECT images based on clustering for the diagnosis of Alzheimer’s disease. The aims of the clustering approach which is based on Gaussian Mixture Model (GMM) for density estimation, is to automatically select Regions of Interest (ROIs) and to effectively reduce the dimensionality of the problem. The clusters represented by Gaussians are constructed according to a maximum likelihood criterion employing the expectation maximization (EM) algorithm. By considering only the intensity levels inside the clusters, the resulting feature space has a significantly reduced dimensionality with respect to former approaches using the voxel intensities directly as features. With this feature extraction method one avoids the so-called small sample size problem and nonlinear classifiers may be used to distinguish between the brain images of normal and Alzheimer patients. Our results show that for various classifiers the clustering method yields higher accuracy rates than the classification considering all voxel values.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (eds.): Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)
Vapnik, V.: Statistical learning theory. John Wiley and Sons, Chichester (1998)
Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machines for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(11), 1542–1550 (2002)
Ramírez, J., Yélamos, P., Górriz, J.M., Segura, J.C.: Svm-based speech endpoint detection using contextual speech features. Electronics Letters 42(7), 877–879 (2006)
Álvarez, I., Górriz, J.M., Ramírez, J., Salas, D., López, M., Puntonet, C.G., Segovia, F.: Alzheimer’s diagnosis using eigenbrains and support vector machines. IET Electronic Letters 45(1), 165–167 (2009)
Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)
Newman, J., von Cramon, D.Y., Lohmann, G.: Model-based clustering of meta-analytic functional imaging data. NeuroImage 29, 177–192 (2008)
McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley and Sons, New York (2000)
Raudys, S., Duin, R.P.W.: Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recognition Letters 19(5-6), 385–392 (1998)
Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in Kernel Methods – Support Vector Learning. MIT Press, Cambridge (1999)
Platt, J.C.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208. MIT Press, Cambridge (1999)
Raudys, S., Jain, A.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)
Stoeckel, J., Malandain, G., Migneco, O., Koulibaly, P.M., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of Alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learn- ing and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)
Górriz, J.M., Ramírez, J., Lassl, A., Salas-Gonzalez, D., Lang, E.W., Puntonet, C.G., Álvarez, I., López, M., Gómez-Río, M.: Automatic computer aided diagnosis tool using component-based svm. In: 2008 IEEE Nuclear Science Symposium Conference Record, pp. 4392–4395 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Górriz, J.M. et al. (2009). Classification of SPECT Images Using Clustering Techniques Revisited. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-02267-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02266-1
Online ISBN: 978-3-642-02267-8
eBook Packages: Computer ScienceComputer Science (R0)