Abstract
Perceiving the environment is crucial in any application related to mobile robotics research. In this paper, a new approach to real-time human detection through processing video captured by a thermal infrared camera mounted on the indoor autonomous mobile platform mSecuritTM is introduced. The approach starts with a phase of static analysis for the detection of human candidates through some classical image processing techniques such as image normalization and thresholding. Then, the proposal uses Lukas and Kanade optical flow without pyramids algorithm for filtering moving foreground objects from moving scene background. The results of both phases are compared to enhance the human segmentation by infrared camera. Indeed, optical flow will emphasize the foreground moving areas gotten at the initial human candidates detection.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benet, G., Blanes, F., Simó, J.E., Pérez, P.: Using infrared sensors for distance measurement in mobile robots. Robotics and Autonomous Systems 40(4), 255–266 (2002)
Bhanu, B., Han, J.: Kinematic-based human motion analysis in infrared sequences. In: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision, pp. 208–212 (2002)
Cherubini, A., Oriolo, G., Macrí, F., Aloise, F., Cincotti, F., Mat, D.: A multimode navigation system for an assistive robotics project. Autonomous Robots 25(4), 383–404 (2008)
Coombs, D., Herman, M., Hong, T., Nashman, M.: Real-time obstacle avoidance using central flow divergence, and peripheral flow. IEEE Transactions on Robotics and Automation 14(1), 49–59 (1998)
Davis, J.W., Sharma, V.: Background-subtraction in thermal imagery using contour saliency. International Journal of Computer Vision 71(2), 161–181 (2007)
Fajen, B.R., Warren, W.H., Temizer, S., Kaelbling, L.P.: A dynamical model of visually-guided steering, obstacle avoidance, and route selection. International Journal of Computer Vision 54(1-3), 13–34 (2003)
Garcia, M.A., Solanas, A.: Estimation of distance to planar surfaces and type of material with infrared sensors. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 1, pp. 745–748 (2004)
Gascueña, J.M., Fernández-Caballero, A.: Agent-based modeling of a mobile robot to detect and follow humans. In: Håkansson, A., et al. (eds.) KES-AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 80–89. Springer, Heidelberg (2009)
Giachetti, A., Campani, M., Torre, V.: The use of optical flow for road navigation. IEEE Transactions on Robotics and Automation 14(1), 34–48 (1998)
Guo, L., Zhang, M., Wang, Y., Liu, G.: Environmental perception of mobile robot. In: Proceedings of the 2006 IEEE International Conference on Information Acquisition, pp. 348–352 (2006)
Iwasawa, S., Ebihara, K., Ohya, J., Morishima, S.: Realtime estimation of human body posture from monocular thermal images. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 15–20 (1997)
Jung, S.-H., Eledath, J., Johansson, S., Mathevon, V.: Egomotion estimation in monocular infra-red image sequence for night vision applications. In: IEEE Workshop on Applications of Computer Vision, p. 8 (2007)
Lookingbill, A., Rogers, J., Lieb, D., Curry, J., Thrun, S.: Reverse optical flow for self-supervised adaptive autonomous robot navigation. International Journal of Computer Vision 74(3), 287–330 (2007)
López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)
López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recognition Letters 27(5), 469–478 (2006)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence (1981)
Mira, J., Delgado, A.E., Fernández-Caballero, A., Fernández, M.A.: Knowledge modelling for the motion detection task: The algorithmic lateral inhibition method. Expert Systems with Applications 27(2), 169–185 (2004)
Nanda, H., Davis, L.: Probabilistic template based pedestrian detection in infrared videos. In: Proceedings of the IEEE Intelligent Vehicle Symposium, vol. 1, pp. 15–20 (2002)
Pavón, J., Gómez-Sanz, J., Fernández-Caballero, A., Valencia-Jiménez, J.J.: Development of intelligent multi-sensor surveillance systems with agents. Robotics and Autonomous Systems 55(12), 892–903 (2007)
Xu, F., Liu, X., Fujimura, K.: Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems 6(1), 63–71 (2005)
Yilmaz, A., Shafique, K., Shah, M.: Target tracking in airborne forward looking infrared imagery. Image and Vision Computing 21(7), 623–635 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castillo, J.C., Serrano-Cuerda, J., Fernández-Caballero, A., López, M.T. (2009). Segmenting Humans from Mobile Thermal Infrared Imagery. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-02267-8_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02266-1
Online ISBN: 978-3-642-02267-8
eBook Packages: Computer ScienceComputer Science (R0)