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Abstract. This paper is concerned with automatic classification of texts
in a medical domain. The process consists in classifying reports of medi-
cal discharges into classes defined by the CIE-9-MC' codes. We will assign
CIE-9-MC codes to reports using either a knn model or support vector
machines. One of the added values of this work is the construction of
the collection using the discharge reports of a medical service. This is a
difficult collection because of the high number of classes and the uneven
balance between classes. In this work we study different representations
of the collection, different classication models, and different weighting
schemes to assign CIE-9-MC' codes. Our use of document expansion is
particularly novel: the training documents are expanded with the descrip-
tions of the assigned codes taken from CIE-9-MC. We also apply SVMs
to produce a ranking of classes for each test document. This innovative
use of SVM offers good results in such a complicated domain.

1 Introduction

The process of automatic text classification can be defined as follows [5]. Given
a static set of classes C' = {c1,- -, ¢}, and a collection of documents to classify
(D), the goal is to find a classification function ¢ = D x C — {1,0}.

Classification is present in most of the daily tasks. One of these classification
tasks is carried out in the Hospitals: the coding of the diagnoses and procedures
in medical episodes. When a patient is discharged, a specialized medical doctor
writes a report that includes the most relevant data occurred in the clinical
episode. These reports are later assigned CIE-9-MC' codes by a dedicated office
(the codification service). There is a team of medical doctors (the coders) who
read the discharge report (including the set of diagnoses) and assign CIE-9-MC
codes. This coding is an international system of numerical categories that are
associated to diseases according to some previously established criteria.

The assignment of CIE-9-MC codes to a clinic episode has the following main
elements:



— The main diagnosis, DxP. It is the disease which is established as the cause
of the admission by the doctor who treated the patient.

— The secondary diagnoses, DxS. These are the other diseases that are present
at the moment of the admission, or the ones which occurred while the patient
was in the Hospital.

This is a supervised multi-class problem. The system learns from a known set
of correctly classified cases (assigned by the coders). A document can belong to
several classes (a discharge report can have several CIE-9-MC codes assigned),
and the number of classes varies between documents. The purpose of our research
is to build an automatic system that, given a new discharge report to be classified,
constructs a ranking of possible codes. In a fully automatic setting, this ranking
could be automatically used to assign codes. In a semi-automatic setting, the
ranking would be presented to a human who would make the final decision.

We use knn and Support Vector Machines (SVM) classifiers. Our work with
knn is similar to the study on knn classifiers in a medical domain reported by
Larkey and Croft [4]. However, we introduce here the following variants in:

— The representation of the documents. We use different representations of
our collection: the complete texts, the diagnosis part of the texts, and the
complete texts expanded with the descriptions of the CIE-9-MC' codes (doc-
ument expansion).

— The retrieval techniques. We use different document retrieval models sup-
ported by the platforms Lemur and Indri?.

— The weighting schemes. We use different variants to weight the CIE-9-MC
codes.

2 Construction of the collection

To build the collection, we first made an study of the services that produce
discharge reports using electronic documents. From this analysis we selected
the Internal Medicine service of the Hospital of Conxo, which is one of the
hospitals in the Complexo Hospitalario Universitario de Santiago, Spain. This
selection was based on the high number of documents available, the large size
of the reports, the uniform format of the documents, and the complexity of the
diagnoses utilized by this service.

The final collection is composed of the discharge reports from jan 2003 to
may 2005, with a total of 1823 documents. We randomly split the collection into
two parts: 1501 training documents and 322 test documents. There are 1238
different classes in the training set and 544 different classes in the testing set.
There are 71 classes that are present in the test set but do not appear in the
training set. The 74 documents associated to these classes were not be discarded
because these documents have usually other classes assigned and, furthermore,
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we want the benchmark to reflect a real setting (there are more than 21k CIE-
9-MC' codes and a given training set hardly contains every single code). Table
1 reports the basic statistics of the collection.

Training  Test

# docs 1501 322
Size 5963Kb 1255Kb
Avg # codes per doc 7.06 7.05
Max # codes per doc 23 19
Avg # terms per doc 519.5 508.1

Min-Max # terms per doc 64-1386 109-1419
Table 1. Statistics of the collection

3 Text Classification based on knn

Classification methods based on knn utilize a similarity or distance measure
between documents. The basic idea is that an incoming report, dyeq., Will be
classified according to the classes assigned to the training documents that are
dnew’s k nearest neighbors. This classification method is popular because it is
simple, intuitive, and easy to implement. Furthermore, it has shown to perform
well in other studies [1, 7], particularly when the collection is unbalanced. This
is our case here.

The knn method retrieves initially k training documents that are similar to
the test document, d,e,. Then, it assigns CIE-9-MC' codes to dyeq according
to the codes associated to the retrieved documents. In our work, we use Lemur,
a popular Information Retrieval platform, to support the retrieval phase. An
index is built from the training set of documents and the test documents act as
queries against the index. Each retrieved document has a similarity score and
the list of retrieved documents is sorted in decreasing order of this score. Each
code associated to every retrieved document becomes a candidate to be assigned
to the test document. Table 2 presents this rank, including the codes associated
to the retrieved documents. Every retrieved document has a code associated to
the main diagnosis (main code) and several secondary codes associated to other
diagnoses reported by the doctors.

Doc Rank sim; Main Code (DxP) Secondary Codes (DxS)

51007762 1 -5.60631 787.91 787.01 553.3 ...
41000982 2 -5.63082 507.0 491.21 518.84 ...
k N

Table 2. Ranking of documents in decreasing order of similarity to a test document



Although some studies suggest to use k = 20, we did experiments with vary-
ing k. Given the ranked documents, the next step is to produce a ranking of codes
for the test document. We use the following expression: Score. = Zilf STMy; - Wic,
where w;,. is the weight associated to code ¢ in document ¢. For every test docu-
ment, a list of possible codes ranked by decreasing Score, is produced. Regarding
w;. we evaluated several alternatives. The simplest one is the baseline weighting
method, where w;. = 1 when the code c is assigned to the training document i
and w;. = 0 otherwise. Other variants of this weighting scheme will be discussed
later.

Note that Lemur implements different IR models and some of them (e.g. the
one used to produce the ranking shown in Table 2) return negative similarity
values. Since the definition of Score. requires positive similarities, we introduce

1=k _sim;

the following normalization: Score,. = Zi:l e - Wie-

4 Text Classification with SVMs

Support Vector Machines (SVMs) are learning methods proposed by Vapnik [6]
that have proved to be very effective in Text Classification [7], and in many
other learning problems. SVMs deal naturally with binary (i.e. two-class) clas-
sification problems. A SVM model permits to define a linear classifier based on
a hyperplane that acts as a border between the two classes. The elements to be
classified (documents in our case) are represented using a vector space model.
Let us first assume that the documents from each class are separable in this
representational space. SVMs look for a hyperplane that separates the classes
and, among the alternatives, the hyperplane that is maximally far away from
any document is selected. The distance between the hyperplane and the nearest
elements is called margin and the elements of each class that are the closest
points to the hyperplane are referred to as support vectors. This is illustrated in
Figure 1(a).

Formally, given a training set represented as {(x1,%1), ..., (Tn, Yn)}, where x;
is a vector (z; € R¥) and y; € {—1, 1} indicates the membership of z; to one class
or another. The x; elements can be separated by a hyperplane with the form
w?'-x+b =0, where w is a weight vector (perpendicular to the hyperplane) and
b is a constant. The classifier is f(z) = sign(w? -z +b).

It can be proved that finding the maximum margin hyperplane can be ex-
pressed through the following minimization problem [6]: Find w and b such that:
a) %wTw is minimum, and b) Va;,y; : vi(wT2; +b) > 1. There is plenty of
studies in the literature on a wide range of optimization techniques to resolve
this problem. We skip here any further details about these methods.

In real applications, classification problems are hardly linearly separable.
Therefore, it is often necessary to permit that the above conditions do not hold
for all the examples. The usual strategy to deal with these situations is to allow
that the hyperplane makes some mistakes (i.e. some points are misplaced), as
shown in Figure 1(b). Formally, this means that we introduce slack variables
into the model. For each z;, we associate a &; value as follows. A nonzero value
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Fig. 2. SVM in two dimensions with slack variables

for &; allows x; to not meet the margin requirement at a cost proportional to
the value of &;. This situation is depicted in Figure 2. According to this, the
slack variables will have a value of zero when the point is correctly situated,
and a positive value when the point is misplaced. This new learning problems is
formally defined as: Find w, b, & > 0 such that: a) 2w’w+C-Y", & is minimum,
and b) Vi, i : yi(wla; +b) > 1§

The new minimization problem involves a tradeoff between how large we can
make the margin, and the amount of elements that can be wrongly classified.
Obviously, we could maximize the margin by simply augmenting the number of
wrongly classified elements, but the quality of the classifier would be harmed.
The C constant is a way to control this overfitting tradeoff. With a high C,
the classification will be stricter and we allow less wrongly classified examples
(the margin is reduced). A low C means that a more flexible classification is
implemented, with larger margin but with more wrongly classified examples.
In our empirical study, different C values will be tested in order to understand
properly the effect of this tradeoff in the context of our difficult problem.

The approach described above works well with linearly separable datasets
that only have a few exceptions or noisy points. However, some problems do not
fit this pattern. There are ways to transform a not linearly separable problem into
a linearly separable one. A given classification problem is much more likely to be
linearly separable if it is transformed into a new classification problem that has a
higher dimension. The vectors x; are mapped into a higher dimensionality space
using a non-linear transformation of the input space, @(x;). Next, the SVMs
learn the maximum margin hyperplane in the context of the expanded space.



Generally, it is complex to compute the ¢ mapping but, for learning purposes,
it is sufficient to be able to compute the internal product between points in the
new space: ®(x;)T®(x;). If the product can be calculated efficiently using the
original data (i.e. without having @(z;) and @(x;)), then the learning problem
can be solved in an efficient way. A kernel function, K (z;,z;) = ®(x;)T ®(x;),
corresponds with this internal product in the expanded space of characteristics.

4.1 Application in the Clinical Domain

Our CIE-9-MC code assignment problem is inherently multi-class but SVMs
are originally designed to do binary classification. Two main alternatives are
discussed in the literature to apply SVMs when the number of classes, ¢, is
greater than two [2]:

— (1-vs-all): it builds ¢ one-vs-rest classifiers and chooses the class whose the
hyperplane classifies the test document with the largest margin.

— (1-vs-1): it builds @ one-vs-one classifiers (one for each possible pair of
classes), applies the test document to every classifier and chooses the class
that is selected by the most classifiers.

We use here 1-vs-all because it involves the construction of fewer classifiers
(one per class). Observe that these methods are designed to assign a single
class to each test document. Since we need to assign several codes to every test
document (or, more generally, we need to build a ranking of codes for each test
document), we adapt 1-vs-all as follows. The margin between the test document
and the hyperplane associated to every class is regarded as a fitness measure for
the document and the class. Hence, classes are ranked by decreasing order of the
margin between the test document and the class’ hyperplane.

As argued above, we need a vectorial representation of the documents in a
space of characteristics. We opted here to represent documents as vectors of tf/idf
weights (each dimension represents a term of the vocabulary). This weighting
method has been applied thoroughly in the literature of IR. We used SV Mtight
[3] to implement the SVM learning process.

5 Evaluation Metrics

The evaluation metrics described in this section require the existence of a gold
standard. In our case, we know the correct codes for each test document because
every training or test document has a list of classes assigned by the coders.
Of course, the list of codes associated to the test documents is only used for
evaluation purposes. We adopt the following metrics, which have been used in
the past for evaluating classifiers of clinical records [4]:

— Awerage 11 point precision: Precision and recall are standard IR evaluation
measures. In our case, precision is the proportion of codes suggested by the



classifier that are correct. Recall is the proportion of all correct codes that
have been suggested by the classifier. Average precision is computed across
precision values obtained at 11 evenly spaced recall points.

— Top candidate: proportion of cases in which the main code is the top candi-
date suggested by the classifier.

— Top 10: proportion of cases in which the main code is in the top 10 candi-
dates.

— Recall 15, Recall 20: level of recall in the top 15 or top 20 candidates.

6 Experiments with knn

The same preprocessing was applied to test and training documents. We used
an stoplist to remove common words, and we did not apply stemming because
it does not usually produce benefits in medical domains [4]. For the retrieval
step we selected the following retrieval models: Indri’s retrieval model, and two
variations of the IR vectorial model (referred by Lemur as tf/idf and cosine).
CIE-9-MC codes have the format CCC.S[X], where CCC is the category or
section, S is the subcategory and X is a subclassification of the subcategory (it
only exists for some subcategories). We evaluate here two different classification
problems: category classification (i.e. assign properly the CCCs without regard to
subcategories or subclassifications), and code classification (i.e. assign properly
the whole code), which is a fine-grained classification and, therefore, it is harder.

6.1 Documents Representation

We created three representations of the collection, namely:

— Diagnoses: contains the sections of the discharge report where the medical
doctor wrote the diagnoses (i.e. the rest of textual explanations in the report
are discarded).

— Total: the complete discharge report is considered.

— Total + CIE-9-MC': composed by the complete discharge report plus the
textual descriptions of the CIE-9-MC codes assigned by the coders. The
training documents are therefore expanded with code descriptions that are
obtained from the CIE-9-MC taxonomy.

Observe that the information encoded for the test and training documents is
the same with the Diagnoses and Total representations. In contrast, with Total
+ CIE-9-MC, the representation of the training and test documents is uneven:
training documents incorporate additional descriptions from the assigned codes
but test documents are not expanded because no information on assigned coded
is available at testing time.

Table 3 reports the performance results obtained with k = 20, the baseline
weighting and Indri’s IR model. These results show that Total and Total + CIE-
9-MC' are the most reliable representations for both classification problems. We



Representation AvgPrec TopCand. Topl0 Recl5 Rec20
Code Classification

Diagnoses 44.0 14.9 58.7 52.6 57

Total 43.1 16.1 64.9 52,5 57.7

Total + CIE-9-MC 43.8 17.4 64.3 53.1  58.2
Category Classtfication

Diagnoses 52.0 21.1 67 60.8 67.9

Total 51.2 22.7 74.2 62.4 67.7

Total + CIE-9-MC 51.8 24.5 73.9 629 682

Table 3. Performance results. knn model (k=20, baseline weighting, Indri’s IR model)

Model AvgPrec TopCand. Topl0 Recl5 Rec20

Indri 43.1 16.1 64.9 52.5 57.7
tf/idf 40.1 10.5 55.6 50.7  55.6
cosine 45.0 17.1 65.5 54.3 60.0

Table 4. Performance results for code classification. knn model (k=20, baseline weight-
ing, Total representation)

also did some experiments with £ = 10 and k£ = 30 but concluded that £ = 20 is
the most robust configuration.

Indri’s retrieval model is a competitive IR method based on combining statis-
tical language models and inference networks. However, it might be the case that
other IR models are better than Indri for this knn problem. So, we compared
Indri against two other IR models implemented by Lemur (tf/idf and cosine).
This comparison, which is reported in Table 4, was done for the code classifica-
tion problem using the Total representation. The tf/idf model is clearly inferior
to the other models. On the other hand, cosine looks slightly superior to Indri.

Still, the results are not good enough to build and automatic classification
system. Some of the metrics (e.g. Top candidate) show poor results. Next, we
propose variations that improve the performance of the classifiers.

Effect of the weighting system The results reported above were obtained
with the baseline weighting, which is rather simplistic. Rather than assigning
a weight equal to one to every code assigned to the retrieved documents, we
will now assign a weight greater than one to the main code assigned to every
retrieved document and a weight equal to one to the secondary codes. In this
way, the main codes receive extra weight in the classification. Table 5 presents
the results obtained with varying weights for the main codes.

These results show that Top candidate and Top 10 improve as the weight
given to main codes increases. In contrast, Avg. Precision, Recall 15 and Recall
20 tend to decrease slightly with higher weights. However, the improvements in
Top candidate and Top 10 are very substantial in comparison with the decrease
of the other measures. This shows that the weighting strategy described above
works well for these classification problems.



Weight (Main code) AvgPrec TopCand. Topl0 Recl5 Rec20
code classification

1 43.1 16.1 64.9 52.5 57.7
1.5 42.5 28.9 68.9 52.4 57.5
1.8 41.7 31.9 69.9 52.3 57.5
2.3 40.8 34.5 73.3 51.0 54.3
2.5 40.5 34.5 73.3 50.9 54.3
2.7 40.3 35.4 73.6 50.9 54.3
4.3 37.2 37.3 76.7 45.5 52.7

category classification

1 51.2 22.7 74.2 62.4 67.7
1.5 50.6 33.8 77.0 62.4 67.5
1.8 50.3 36.0 78.6 62.4 67.4
2.3 49.3 38.8 80.1 61.2 65.7
2.5 48.9 39.1 80.1 61.2 65.7
2.7 48.5 40.3 80.4 61.2 65.7
4.3 46.0 41.3 82.9 57.0 64.5

Table 5. knn model (k=20, Total representation, Indri model)

C AvgPrec TopCand. Topl0 Recl5 Rec20
code classification

Default 58.1 16.1 74.8 67.3 72.8

0.5 59.4 16.7 73.2 67.3 72.8

1000 59.4 16.7 73.2 67.3 72.8
category classification

Default 66.0 22.0 84.1 77.6 82.2

0.5 67.3 22.9 83.2 77.8 82.3

1000 67.3 22.9 83.2 77.8 82.3

Table 6. SVM, Total representation, linear kernel

6.2 Experiments with SVM

The SVM experiments were done with the Total representation, which worked
reasonably well for knn. We ran classifications using varying C' values, and with
the following kernels: linear, polynomial and gaussian. However, we only report
here results for linear kernels because these kernels worked better than non-linear
kernels. The results are presented in Table 6°.

6.3 Comparing knn and SVM

We selected the most robust knn configurations (Table 5, weight=2.7 for codes
and weight=2.5 for categories) and compared them against the best SVM con-
figurations. Table 7 presents this comparison. This shows that knn with proper
weighting is very effective to achieve good Top Candidate performance. How-
ever, SVM beats knn in nearly all the remaining cases. The knn classifier might
be useful if we were to select a single class for every test document. However,
as argued above, the average number of codes per document is around 7 and,
therefore, Avg. Precision, Top 10, Recall 15 and Recall 20 are more important
than Top Candidate in this domain. These results indicate that SVM is a better
classifier than knn for our classification problem in the medical domain.

® The Default setting for C is n/ ZLI x; - T;, where n is the number of training
documents.
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AvgPrec TopCand. Topl0 Recl5 Rec20
code classification

knn 40.3 35.4 73.6 50.9 54.3

SVM  59.4 16.7 73.2 67.3 72.8
category classification

knn 48.9 39.1 80.1 61.2 65.7

SVM  67.3 22.9 83.2 77.8 82.3

Table 7. knn vs SVM

7 Conclusions

In this paper we presented preliminary experiments on different classifiers that
automatically assign CIE-9-MC' codes to medical documents. We created a new
collection composed of discharge reports from an Internal Medicine service and
we experimented with different representations of the collection. Comparing knn
against SVM we found that knn is better than SVMs to identify the main code
associated to a given report. However, SVMs are more adequate than knn for
supporting the medical coding process because we need to find automatically as
many codes as possible and SVMs show a more consistent behavior in terms of
recall. This is a new demonstration of the learning power achieved with SVMs.
The performance results obtained here are good enough to build a system that
constructs a ranking of candidate codes for every new discharge report. This
would be presented to a medical coder who would benefit from the availability
of this ranked list.
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