Abstract
Data access time becomes the main bottleneck in applications dealing with large-scale graphs. Cache-oblivious layouts, constructed to minimize the geometric mean of arc lengths of graphs, have been adapted to reduce data access time during random walks on graphs. In this paper, we present a constant factor approximation algorithm for the Minimum Geometric Mean Layout (MGML) problem for bounded-degree planar graphs. We also derive an upper bound for any layout of the MGML problem. To the best of our knowledge, these are the first results for the MGML problem with bounded-degree planar graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yoon, S.E., Lindstrom, P., Pascucci, V., Manocha, D.: Cache-Oblivious Mesh Layouts. ACM Transactions on Graphics (SIGGRAPH) 24(3), 886–893 (2005)
Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: SODA 2004: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics, pp. 718–727 (2004)
Hennessy, J.L., Patterson, D.A., Goldberg, D.: Computer Architecture, A Quantitative Approach. Morgan Kaufmann, San Francisco (2007)
Yoon, S.E., Lindstrom, P.: Mesh layouts for block-based caches. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization) 12(5), 1213–1220 (2006)
Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: STOC 1974: Proceedings of the sixth annual ACM symposium on Theory of computing, pp. 47–63. ACM, New York (1974)
Papadimitriou, C.H.: The NP-completeness of the bandwidth minimization problem 16(3), 263–270 (1976)
Gavril, F.: Some np-complete problems on graphs. In: 11th Conference on Information Science and Systems, pp. 91–95 (1977)
Hansen, M.: Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems. In: 30th Annual Symposium on Foundations of Computer Science, October-November 1, 1989, pp. 604–609 (1989)
Feige, U., Lee, J.R.: An improved approximation ratio for the minimum linear arrangement problem. Inf. Process. Lett. 101(1), 26–29 (2007)
Goldberg, M.K., Klipker, I.A.: An algorithm for minimal numeration of tree vertices. Sakharth. SSR Mecn. Akad. Moambe 81(3), 553–556 (1976) (in Russian)
Muradyan, D.O., Piliposyan, T.E.: Minimal numberings of a rectangular lattice. Akad. Nauk. Armyan. SRR 1(70), 21–27 (1980) (in Russian)
Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth minimization 34(3), 477–495 (1978)
DÃaz, J., Penrose, M.D., Petit, J., Serna, M.: Approximating layout problems on random geometric graphs. Journal of Algorithms 39 (2001)
DÃaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)
Sagan, H.: Space-Filling Curves. Springer, Heidelberg (1994)
Velho, L., de Miranda Gomes, J.: Digital halftoning with space filling curves. In: ACM SIGGRAPH, pp. 81–90 (1991)
Lindstrom, P., Pascucci, V.: Visualization of large terrains made easy. IEEE Visualization, 363–370 (2001)
Pascucci, V., Frank, R.J.: Global static indexing for real-time exploration of very large regular grids. In: Supercomputing (2001)
Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Transactions on Image Processing 5(5), 794–797 (1996)
Wierum, J.M.: Logarithmic path-length in space-filling curves. In: 14th Canadian Conference on Computational Geometry, pp. 22–26 (2002)
Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Communications of ACM 31, 1116–1127 (1988)
Yoon, S.E., Manocha, D.: Cache-efficient layouts of bounding volume hierarchies. Computer Graphics Forum (Eurographics) 25(3), 507–516 (2006)
van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett. 6, 80–82 (1977)
Diks, K., Djidjev, H., Sýkora, O., Vrto, I.: Edge separators of planar and outerplanar graphs with applications. J. Algorithms 14(2), 258–279 (1993)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36(2), 177–189 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hasan, M.K., Yoon, SE., Chwa, KY. (2009). Bounds on the Geometric Mean of Arc Lengths for Bounded-Degree Planar Graphs. In: Deng, X., Hopcroft, J.E., Xue, J. (eds) Frontiers in Algorithmics. FAW 2009. Lecture Notes in Computer Science, vol 5598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02270-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-02270-8_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02269-2
Online ISBN: 978-3-642-02270-8
eBook Packages: Computer ScienceComputer Science (R0)