Abstract
We give a decomposition of the equational theory of call-by-value λ-calculus into a confluent rewrite system made of three independent subsystems that refines Moggi’s computational calculus:
-
the purely operational system essentially contains Plotkin’s β v rule and is necessary and sufficient for the evaluation of closed terms;
-
the structural system contains commutation rules that are necessary and sufficient for the reduction of all “computational” redexes of a term, in a sense that we define;
-
the observational system contains rules that have no proper computational content but are necessary to characterize the valid observational equations on finite normal forms.
We extend this analysis to the case of λ-calculus with control and provide with the first presentation as a confluent rewrite system of Sabry-Felleisen and Hofmann’s equational theory of λ-calculus with control.
Incidentally, we give an alternative definition of standardization in call-by-value λ-calculus that, unlike Plotkin’s original definition, prolongs weak head reduction in an unambiguous way.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci. 1, 125–159 (1975)
Moggi, E.: Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66, Edinburgh Univ. (1988)
Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. Lisp and Symbolic Computation 6(3-4), 289–360 (1993)
Hofmann, M.: Sound and complete axiomatisations of call-by-value control operators. Mathematical Structures in Computer Science 5(4), 461–482 (1995)
Dezani-Ciancaglini, M., Giovannetti, E.: From Böhm’s theorem to observational equivalences: an informal account. Electr. Notes Theor. Comput. Sci. 50(2) (2001)
Curien, P.L., Herbelin, H.: The duality of computation. In: Proceedings of ICFP 2000. SIGPLAN Notices, vol. 35(9), pp. 233–243. ACM, New York (2000)
Herbelin, H.: C’est maintenant qu’on calcule: au cœur de la dualité. Habilitation thesis, University Paris 11 (December 2005)
Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210,405–431 (1935); English Translation in The Collected Works of Gerhard Gentzen, Szabo, M. E. (ed.), pp. 68–131
Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)
Regnier, L.: Une équivalence sur les lambda-termes. Theor. Comput. Sci. 126(2), 281–292 (1994)
Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang. Syst. 19(6), 916–941 (1997)
Ariola, Z.M., Herbelin, H.: Control reduction theories: the benefit of structural substitution. Journal of Functional Programming 18(3), 373–419 (2008); with a historical note by Matthias Felleisen
David, R., Py, W.: Lambda-mu-calculus and Böhm’s theorem. J. Symb. Log. 66(1), 407–413 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Herbelin, H., Zimmermann, S. (2009). An Operational Account of Call-by-Value Minimal and Classical λ-Calculus in “Natural Deduction” Form. In: Curien, PL. (eds) Typed Lambda Calculi and Applications. TLCA 2009. Lecture Notes in Computer Science, vol 5608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02273-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-02273-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02272-2
Online ISBN: 978-3-642-02273-9
eBook Packages: Computer ScienceComputer Science (R0)