Skip to main content

An Operational Account of Call-by-Value Minimal and Classical λ-Calculus in “Natural Deduction” Form

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5608))

Included in the following conference series:

  • 457 Accesses

Abstract

We give a decomposition of the equational theory of call-by-value λ-calculus into a confluent rewrite system made of three independent subsystems that refines Moggi’s computational calculus:

  • the purely operational system essentially contains Plotkin’s β v rule and is necessary and sufficient for the evaluation of closed terms;

  • the structural system contains commutation rules that are necessary and sufficient for the reduction of all “computational” redexes of a term, in a sense that we define;

  • the observational system contains rules that have no proper computational content but are necessary to characterize the valid observational equations on finite normal forms.

We extend this analysis to the case of λ-calculus with control and provide with the first presentation as a confluent rewrite system of Sabry-Felleisen and Hofmann’s equational theory of λ-calculus with control.

Incidentally, we give an alternative definition of standardization in call-by-value λ-calculus that, unlike Plotkin’s original definition, prolongs weak head reduction in an unambiguous way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci. 1, 125–159 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Moggi, E.: Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66, Edinburgh Univ. (1988)

    Google Scholar 

  3. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. Lisp and Symbolic Computation 6(3-4), 289–360 (1993)

    Article  Google Scholar 

  4. Hofmann, M.: Sound and complete axiomatisations of call-by-value control operators. Mathematical Structures in Computer Science 5(4), 461–482 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dezani-Ciancaglini, M., Giovannetti, E.: From Böhm’s theorem to observational equivalences: an informal account. Electr. Notes Theor. Comput. Sci. 50(2) (2001)

    Google Scholar 

  6. Curien, P.L., Herbelin, H.: The duality of computation. In: Proceedings of ICFP 2000. SIGPLAN Notices, vol. 35(9), pp. 233–243. ACM, New York (2000)

    Google Scholar 

  7. Herbelin, H.: C’est maintenant qu’on calcule: au cœur de la dualité. Habilitation thesis, University Paris 11 (December 2005)

    Google Scholar 

  8. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210,405–431 (1935); English Translation in The Collected Works of Gerhard Gentzen, Szabo, M. E. (ed.), pp. 68–131

    Google Scholar 

  9. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  10. Regnier, L.: Une équivalence sur les lambda-termes. Theor. Comput. Sci. 126(2), 281–292 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang. Syst. 19(6), 916–941 (1997)

    Article  MATH  Google Scholar 

  12. Ariola, Z.M., Herbelin, H.: Control reduction theories: the benefit of structural substitution. Journal of Functional Programming 18(3), 373–419 (2008); with a historical note by Matthias Felleisen

    Article  MathSciNet  MATH  Google Scholar 

  13. David, R., Py, W.: Lambda-mu-calculus and Böhm’s theorem. J. Symb. Log. 66(1), 407–413 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herbelin, H., Zimmermann, S. (2009). An Operational Account of Call-by-Value Minimal and Classical λ-Calculus in “Natural Deduction” Form. In: Curien, PL. (eds) Typed Lambda Calculi and Applications. TLCA 2009. Lecture Notes in Computer Science, vol 5608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02273-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02273-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02272-2

  • Online ISBN: 978-3-642-02273-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics