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View Discovery in OLAP Databases through
Statistical Combinatorial Optimization

Cliff Joslyn!, John Burke?, Terence Critchlow?,
Nick Hengartner?, and Emilie Hogan®3

! Pacific Northwest National Laboratory
2 Los Alamos National Laboratory
3 Mathematics Department, Rutgers University

Abstract. The capability of OLAP database software systems to han-
dle data complexity comes at a high price for analysts, presenting themn
a combinatorially vast space of views of a relational database. We re-
spond to the need to deploy technologies sufficient to allow users to guide
themselves to areas of local structure by casting the space of “views” of
an OLAP database a combinatorial object of all projections and sub-
sets, and “view discovery” as an optimization process over that lattice.
We equip the view lattice with statistical information theoretical mea-
sures sufficient to support a combinatorial search process. We outline
“hop-chaining” as a particular view discovery algorithm over this ob-
ject, wherein users are guided across a permutation of the dimensions
by searching for successive two-dimensional views, pushing seen dimen-
sions into an increasingly large background filter in a “spiraling” search
process. We illustrate this work in the context of data cubes recording
summary statistics for radiation portal monitors at US ports.

1 Introduction and Related Work

OnLine Analytical Processing (OLAP) [1,7, 8] isa relational database technology
providing users with rapid access to summary, aggregated views of a single large
database, and is widely recognized for knowledge representation and discovery in
high-dimensional relational databases. OLAP technologies provide intuitive and
graphical access to the massively complex set of posstble summary views avail-
able in large relational (SQL) structured data repositories [21]. But the ability of
OLAP database software systems, such as the industry-leading Hyperion? and
ProClarity® platforns, to handle data complexity comes at a high price for an-
alysts. The available portions and projections of the overall data space present
a bewilderingly wide-ranging, combinatorially vast, space of options. There is
an urgent need for knowledge discovery techniques that guide users’ knowledge
discovery tasks; to find relevant patterns, trends, and anomalies; and to do so
within the intuitive interfaces provided by “business intelligence” OLAP tools.
Through the Generalized Data-Driven Analysis and Iutegration (GDIDAI)
Project [10], our team has been developing both pure and hybrid OLAP data

4 http://www.oracle.com/technology/products/bi/essbase/visual-explorer.html
5 http://wwv.microsoft.com/bi/products/ProClarity/proclarity~overview.aspx
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analysts capabilities for a range of homeland security applications. The over-
all GDDAI goal is to provide a seamless integration of analysis capabilities,
allowing analysts to focus on understanding the date instead of the tools. We
describe GDDAT's approach to knowledge discovery in OLAP data cubes us-
ing inforination-theoretical combinatorial optimization, and as applied in the
ProClarity platforin on databases of surveillance data from radiation monitors
at US ports of entry. We aim at a formalism for user-assisted knowledge discovery
in OLAP databases around the fundamental concept of view chaining. Users
are provided with analytical feedback to guide themselves to areas of high local
structure within view space: that is, to significant collections of dimensions and
data items {columns and rows, respectively), in an OLAP-structured database,
QLAP is fundamentally concerned with a collection of N variables X* and a
multi-dimensional data relation over their Cartesian product X = Xfil X
Thus formalisms for OLAP data analysis are naturally rooted in relational
database theory, and OLAP formalisms [2,9,30] extend relational calculi and
algebras, for example extending the SQL language to its multi-dimensional ana-
log MDX®. But OLAP shares mathematical connections with a range of multi-
variate analytical approaches operable on the space X, for example statistical
databases [27]; the analysis of contingency tables [4]: hierarchical log-linear mod-
eling [18]; grand tour methods in multi-variate data visualization [3]; projection
pursuit [19}; data tensor analysis [13]; and reconstructibility analysis [12,20].
Our ultimate goal is to place OLAP knowledge discovery methods within a
mathematical context of combinatorial optimization in such a mmanner as to be
realizable within existing industry-standard datalase patforms. Specifically:

~ Given a foundational QLAP database engine platforin {e.g. FssBase? ) SSAS?);

- And an OLAP client with technology for graphical display and an intuitive
interface (e.g. ProClarity, Hyperion};

— Cast the space of views (sub-cubes) of an OLAP database as a combinato-
rial, lattice-theoretical structure;

— Equipped with statistical measures reflecting the structural relations among
views {their dimensional scope, depth, ete.) in the context of the data ob-
served within them;

- To support both automated search to areas of high local structure;

— And user-guided exploration of views in the context of these measures.

While we believe that our emnphasis on a combinatorial approach is distinct,
our work resonates with that of a number of others. Qur process of “view chain-
ing”, or moving from one projected subset of a data cube to another intersecting
in dimensionality, is similar to the navigational processes described by others [23—
26], and anticipated in some of our prior work [11]. But we note that approaches
which seek out “drill-down paths” [6] only “descend” the view lattice along one
“axis™ of views with increasing dimensional extension, sequentially adding vari-
ables to the view at each step. In contrast, our “hiop-chaining” technique chains

S http://msdn.microsoft.com/en~us/library/ms145506 . aspx
7 nttp://www.oracle.com/appserver/business-intelligence/essbase.bhtml
¥ nttp://msdn.microsoft.com/en-us/library/ms175603(SQL.90) .aspx
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through a sequence of two-dimensional views, affecting a permutation of the
variables X',

Our overall approach is consistent with an increasingly large body of simi-
lar work drawing on information theoretical statistical measures in data cubes
to provide quantities for making navigational choices [20,22]. However, some
other researchers have used different statistical approaches, for example vari-
ance estimation [25] or skewness measures [15]. Our primary departure from
traditional OLAP analysis is the extension to conditioning and conditional prob-
ability measures over views. This not only provides the basis for optimization
and navigation, it also creates a strong connection to graphical or structural sta-
tistical models [5,29], graphoid logics [16,28], as well as systems-theory based
structural model induction methodologies [12, 14].

We begin by establishing concepts and notation for operation of OLAP
databases as hierarchical data tensors, and then define the view lattice over
{non-hierarchical, unconditional) views. This brings us to a point where we can
explicate the fundamental OLAP operations: projection, extension, filtering, and
“Hushing” (decreasing a filter}. We introduce conditional views and the com-
plex combinatorial object which is the conditional view space. This prepares
us to introduce “hop-chaining” as a particular view discovery algorithm over
this combinatorial object, wherein users are guided by conditional information
measures across 8 permutation of the dimensions by searching for successive
two-dimensional views, pushing seen dimensions in a “spiraling” search process
into an imcreasingly large background filter. We then illustrate hop-chaining on
databases of surveillance data from radiation wonitors at US ports of entry.

2 OLAP Formalism

Although the mathematical tools required to analyze OLAP databases are rela-
tively simple, their notational formalisms are inevitably, and regretably, not [2,
9, 30]. While our formmalism is similar, it differs in a number of ways as well:

— We combine projections I on dimensions and restrictions .J on records into
a lattice-theoretical object called a view Dy ;.
For this work we consider only a single "measure” (a quantity tracked and
aggregated in the data cube} as an integral count of a number of records.
Such count measures support the development of frequency distributious,
and thus information-theoretical measurcs, over cube views. Thus we do
not deal with other quantitative measures, or the general distinction and
interaction between measures and dimensions.
Our view discovery method is available on flat dimensions which are not
hierarchically-structured to support roll-up aggregation and drill-down dis-
aggregation operations. But for completeness within an OLAP context, we
introduce the notation and concepts for hierarchical dimensions, develop our
methodology without them, and then return to discuss how we handle drill-
down in our practical application, and suggest the way forward to future
extension to the full hierarchical case.
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2.1 Data Cubes as Hierarchical Data Tensors

Let N = {1,2,.. },Ny := {1,2,...,N}. For some N € N, define a data cube
as an N-dimensional hierarchical data tensor D= (X, X, Q, ¢) where:

- X = {X'}N, is a collection of N variables or columns with X* =
{fk'i}ﬁ:;l € A )

- X=Xy ep X isan overall data space or data schema whose members
are N-dimensional vectors @ = (Tg1. Tz, ..., Tpn) = (230, € X called
slots;

— Q= {P'}, is a collection of N partially-ordered hierarchical dimensions
Pt = (P!, <') with members p' € P'. Each partially-ordered set (poset)

P is tsomorphic to a sub-poset of the Boolean lattice B* = <2X' , §> which

is the power set of the values of the variable X* ordered by set inclusion.
We map each subset Y¥ ¢ X* to its corresponding member p* € P*, and
denote Y € P! for simplicity. In particular for each z* € X, {z'} € P'isan
atom of P The order relation <! is then isomorphic to a sub-relation of the
subset relation C. Additionally, each partial order <' implies the covering
relation «* where p <' p’ means that p <' p’ and p is an immediate child
of p'. While in principle each poset P* could be as large as the full power
set, iy practice, they are trees, with X' € P? and Vz' € X*, {2} € P4
- ¢: X - {0.1,...} is a count function.

Let M := 3" .y c(x} be the total number of records in the database. Then
D also has relative frequencies f on the cells, so that f : X — [0, 1], where
flz) = "’—%—?—} and thus 3 f(2) = 1.

We cau identify the OLAP space or cube schema as P = Xfix Pi, so
that each p € P is a cell. We then have the hierarchical count function ¢é :
P — N, where é(p) := Zmép c(x), and <= Xz\il <*, the product order of the
hierarchies. Note that we can also define é recursively,

é(p) - Z;}'%p ‘:'('P’) ?:}{ill} =p .
o(p) Hzt=p
‘There is also the hierarchical frequency function f : P — {0, 1}, with f(p) = 65‘;’).
In an OLAP database context, the variables X* € & correspond to columns
in a relational data table; the dimensions P! € Q to the dimensions of an OLAP
cube; vectors @ € X to the rows of a fact table; the vectors p € P to the cells in
an OLAP cube; and the counts &(p) to the values stored in the p cell of a cube.
An example of a data tensor is shown in Table 1, for X = { X} X2 X3} =
{X.,Y.,Z}, with X = {o,08}.Y = {a,b,¢}. Z = {x,y, 2, w}. so that N = 3. The
table shows the counts (&), so that A = 74, and the frequencies f{x). In general
we can assume the entire power set B = 2% as a natural hierarchy on each X*,
but we can additionally assert a more specific tree hierarchy P? = <P3, §3> on
Z, with P? = {z,y,z,w,r = {z,y},s = {z,w},t = Z}. Then we have e.g. a
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XY Zie(x)| flz) X v Zle(@)| f(z)
oo r 1j0.014
. g4 ax 110.014
z 310.041
by 410.054
w 710.095
p z 3]0.041
b x 910.122
. w 310.041
wl  15/0.203
. cx 610.081
¢z 210.027
vl 2i0.027
Y 810.108
z 4]0.054
z 4]0.054 w 1o.014
w 110.014

Table 1. An example data tensor. Blank entries repeat the elements above, and rows
with zero counts are suppressed.

typical slot « = {3,b,y) € X and a typical cell p = {{B},{b},s) € P. Note that
&p) = c({B,b,2)) + ({8, b,w)) = 6, f(p) = 0.082.

2.2 Views and Chaining Operations in the View Lattice

In this section we consider only the non-hicrarchical case where YP' € Q, P* =
X', and <'= {). Then X = P, and P becomes a regular data tensor, or an N-
dimensional contingency table. We return to hierarchical data cubes in Sec. 4.3.

At any time, we may look at a projection of D along a sub-cross-product
involving only certain dimensions I C Npy. Call 7 a projector, and denote
x| I ={rp)er € X | T where X | ] := X“S,Xi, as a projected vector and
data cube. We write « | 7 for ¢ | {4}, and for projectors [ C I’ and vectors
zye X, weuwsex [ ICy | ltomeanVie Lo |i=y |1

Count and frequency functions convey to the projected count and frequency
functions ¢[f} : X L I — Nand f[I] : X | I — [0,1], so that

M= > ) (1)
o [Ny Dzl

fi L= Y fa), (2)
@ [Ny 2wl ]

and 37 exyr [ L T) = 1. In words, we add the counts (resp. frequencies)
over all vectors in y € X such that y | [ = @ | [. This is just the process of
building the /-marginal over f, seen as a joint distribution over the X* for i ¢ I.
Any set of record indices J € Njys is called a filter. Then we can consider
the Rltered count function ¢/ : X — {0,1,...} and frequency function f7 : X —
[0, 1] whose values are reduced by the restriction in J C Njy, now determining

M =" )= | < M. (3)
zeX
We renormalize the frequencies f7 over the resulting M’ to derive

c’(x)

fj(m) = M (4)




so that still 3 . () = 1.

Finally, when both a selector I and filter .J are available, then we have ¢”/[1] :
X | T = {0,1,. .}, f/[I] x| I — [0,1] defined analogously, where now
Serrexyr U L 1) = 1. So given a data cube D, denote Dy y as a view
of D, restricting our attention to just the J records projected onto just the [
dimensions X | 7, and determining count ¢”[I] and frequency f”[I] functions.

In a lattice theoretical coutext, each projector I C Ny can be cast as a
point in the Boolean lattice BY of dimension N called a projector lattice.
Similarly, each filter J C Ny is a point in a Boolean lattice B called a filter
lattice. Thus each view Dy ; maps to a unique node in the view lattice B =
BY 5 BM = 2N x 9™ the Cartesian product of the projector and filter lattices.

We then define chaining operations as transitions from an initial view Dy
to another D/ y or Dy 5, corresponding to a move in the view lattice B:

Projection: Removal of a dimension so that I’ = I ~ {{} for some i € 1. This
corresponds to moving a single step down in BY | and to marginalization in
statistical analyses. We haveVa' | I'e X | I,

JNE =Y Jila). (5)

zl Dz LI

Extension: Addition of a dimension so that I’ = [ U {i} for some ¢ ¢ I. This
corresponds to moving a single step up in BY. Rather than aggregating,
we're now disaggregating or distributing information about the I dimensions
over the I’ ~ [ dimensions. Notationally, we have the converse of (5), so that
Ve | TeX |1,

S diIEy == L ).
w L' Deld

Filtering: Removal of records by strengthening the filter, so that J/ C J. This
corresponds to moving potentially multiple steps down in B

Flushing: Addition of records by weakening (reversing, flushing) the filter, so
that J' 2 J. Corresponds to moving potentially multiple steps up in BM.

Repeated chaining operations thus map to trajectories in £3. Consider the
very small example shown in Fig. 1 for N = M = 2 with dimensions A =
{X,Y} and two N-dimensional data vectors a,b € X x Y, and denote e.g.
X/ab = {a | {X},b ] {X}}. The left side of Fig. 1 shows the separate pro-
jector and selector lattices (bottom nodes @ not shown ), with extension as a
transition to a higher rank in the lattice and projection as a downward tran-
sition. Similarly, filtering and flushing are the corresponding operations in the
filter lattice. The view lattice is shown on the right, along with a particular chain
operation Dx vy (a} ** Div}.(a}, which projects the subset of records {a} from
the two-dimensional view {X,Y} = X to the one-dimensional view {X} € A.

2.3 Relational Expressions and Background Filtering

Note that usually M > N, so that there are far more records than dimen-
sions {in owr example, AT = 74 > 3 = N). In principle, filters J defining
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XY X/ab* “Ay/ab

ab
PN
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X Y a b /X Yia~ :v: /XYJ‘b\\
Project Filter A/ 277 ¥ T
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Dimensions {X ,Y} Vectorsabin XxY Y

Fig. 1. The lattice theoretical view of data views. (Left) The projector and filter lattices
BY, BM (global lower bounds @ not shown). (Right) The view lattice BB as their product.
The projection chain operation Dx v} (e} = D{x}.(a} is shown as a bold link.

which records to include in a view can be specified arbitrarily, for example
through any SQL or MDX “where” clause, or through OLAP operations like
“top n”, including the n records with the highest value of some feature. In
practice, filters are specified as relational expressions in terms of the dimen-
sional values, as expressed i1 MDX where clauses. In our example, we might
say where X = ¢ and (Z <=y and Z >= x). using lexicographic order on the Z
variable to determine a filter J specifving just those 20 out of the total possi-
ble 74 records. For notational purposes, we will therefore sometimes use these
relational expressions to indicate the corresponding filters.

Note that each relational filter expression references a certain set of variables,
in this case X and Z, denoted as 7 € Ny. Compared to our projector 7, R
naturally divides into two groups of variables:

Foreground: Those variables in R = K 1 which appear in both the filter
expression and are included in the current projection.

Background: Those variables in R® := R ~ I which appear only in the filter
expression, but are not part of the current projection.

The portions of filter expressions involving foreground variables restrict the
rows and columns displayed in the OLAP tool. Filtering expressions can have
many sources, such as Show Only or Hide. It is common to select a collection
of siblings within a particular sub-branch of the P? tree. For example for a
spatial dimension P, the user within the ProClarity tool might select “A11 ->
USA -> California”, or its children “California ~> Cities”, all siblings. But
those portions of filter expressions involving background variables do not change
which rows or columns are displayed, but ouly serve to reduce the values shown
in cells. In ProClarity, these are shown in the Background paue.

2.4 Example

Table 2 shows the results of four chainiug operations from our original example
in Table 1, including a projection I = {1,2,3} +» I’ = {1,2}, a filter using
relational expressions, and a filter using a non-relational expression. The bot-
tom right shows a hybrid result of applying both the projector I/ = {1,2} and
the relational filter expression where ¥ = o and {Z <=y and Z »»= x}. Compare



this to the top left, where there is only a quantitative restriction for the same
dimensionality because of the use of a background filter. Here I = {X. Y}, R =

{X,Z}, R = {X}, RV = {Z}, M’ = 20.

X Y|l (@) f1')(x)

o a 1] 0150 XY zZlle” @)|f (=)
b 241 0.325 o ax 1i 0.050
c 15/ 0.203 box 9| 0.450
8 a il 0.014 ¢z 21 0.100
b 10| 0.136 y 8| 0.400
¢ 13| 08.176
XV Z[ (@) (=)
o bw| 15 0333 X Y| I =)
T 9l 0.200 o a 1 0.050
cy 8 0.178 b 9 0.450
a w 71 0.156 c 10 0.500

B cx 6] 0.133
Table 2. Results from chaining operations Dx, .n,, — Dy from our original data
cube in Table 1. {Top Left) Projection: I' = {1,2}, M’ = M = 74. (Top Right)
Filter: J' = where X = « and (Z <= y and Z >= x). M’ = 20. (Bottom Left) Filter: .J/
determined from top 5 most frequent entries, A{" = 45. (Bottom Right) /' = {1,2} and
J' determinued by the relational expression where X = &x and {Z <= y and Z >= x).

3 Information Measures on Conditional Views

For this section, we will generally consider the filter J to be fixed, and supress
the superscript on f, unless otherwise needed.

3.1 Conditional Views

We have seen that the frequencies f : X — [0,1] represent joint probabilities
Fle) = flop, zae, ..., 2w, so that from (2) and (5), flI{{x | I) expresses
the I-way marginal over a joint probability distribution f. Now consider two
projectors I;, Iy € Ny, so that we can define a conditional frequency f{I| 2]

X | Lyl —[0,1] where f[1)|2] = ﬂ%ﬂ For individual vectors, we have

Slhuhb x| LUuk)
fll2)(z | I2)

flL{I2](x) is the probability of the vector @ | I, U I restricted to the ; U L,
dimensions given that we know we can only choose vectors whose restriction
to Iz is @ | I». We note that flL[(z) = flL|(x), fI0lI2] = 1, and since
fILL] = flI ~ I2]I2], in general we can assume that I and I; are disjoint.

We can now extend our concept of a view to a conditional view Dy 4, s
as a view on Dy r, s, which is further equipped with the conditional frequency
f |1, Conditional views Dy, jy, s live in a different combinatorial structure
than the view lattice B. To describe I1|I; and J in a conditional view, we need
three sets Iy, I, € Ny and J € Ny, with I} and Iy disjoint. So define A =
3% x 2M where 31 is a poset with the following structure:

f{flllg](fl‘) S f{fljlgl(:ll VL U]Q) ==



— N + 1 levels numbered from the bottom 0,1,... N.
- The i'* level contains all partitions of each of the sets in ([’Y]) that is the
-element subsets of Ny, into two parts where
1. The order of the parts is significant, so that [{1,3}, {4}] and [{#4}.{1.3}]
of {1, 3,4} are not equivalent.
2. The empty sct is an allowed member of a partition, so [{1,3.4},%] is in
the third level of 3tV for N > 4.
— We write the two sets without set brackets and with a | separating them.
— The partial order is given by an extended subset relation: if I; € I, and
Iy C Iy, then LIy < Iyl e.g 1 213 <1 24]3.

An element in the poset 31V corresponds to an 1[I, by letting I, (resp. Io)
be the elements to the left (resp. right) of the |. We call this poset 31V because
it's size is 3" and it really corresponds to partitioning Ny into three disjoing
sets, the first being [y, the second being I» and the third beiug Ny ~ (I, U I3).
The structure 313 is shown in Fig. 2.

Fig. 2. The structure 3l

3.2 Information Measures

So given a view D; ; € B which we identify with its frequency f/[I]. or a
conditional view Dy jr,.s € A which we identify with its conditional frequency
f"[[} |12}, we are interested in measuring how “interesting”, “unusual”, or how
much information content is present. Such measures can then be used for combi-
natorial search and optimization over the view structures 8, A. We use some of
the standard, and some not so widely used, measures from information theory.

First, for an unconditional view Dy ;. we can define the entropy measure (no
longer suppressing J) ‘

HM) == S f0)() logls [T)(w)-

eeX 7

Maximum entropy corresponds to a “flat” uniform distribution, so other things
being equal, users have an interest in views with lower H. Given a conditional
view Dy y1,.s, we also have the conditional entropy, H{f L), where

H(f'[NiD]) = H( [ u L)) - H(f (1))



Given two views Dy j, Dy o of the same dimensionality 1, but with different
filters J and J’, we have the relative entropy (directed divergence. or Kullback-
Leibler divergence)

J
DN (T I (f,{ll())j
s = 32 i@ tes gy
and the Hellinger distance

U UIENDY (\/f*’{fl(x)m\/ .,,[,Km))‘{

eeX|]

We prefer G to [J, since it is symmetric, less sensitive to zeros in the distribution,
and it can be shown that for distributions that are bounded away from zero and
close to one another, D is equal to first order to the square to one quarter of the
square of G {17].

4 Hop-Chaining View Discovery

Given our basic formalism on data views, conditional views, and information
measures on them, a variety of possible user-guided navigational tasks become
possible. For example, above we discussed Cariou ef al. [6], who develop meth-
ods for discovering “drill-down paths” in data cubes. We can describe this as
creating a series of views with projectors Iy D Iy 2 Iy of incrcasingly specified
dimensional structure.

Our approach is motivated by the idea that most users will he challenged
by complex views of high dimensionality, while still needing to explore many
possible data interactions. We are thus interested in restricting our users to
two-dimensional views only, producing a sequence of projectors Iy, I, I3 where
1h = 2and [ N Ixp1] = 1, thus affecting a permutation of the variables X

4.1 Preliminaries

We assume a fixed but arbitrary permutation of the 1 € Ny so that we can refer
to the dimensions X1, X2 ..., X¥ in order. The choice of the initial variables
X1, X2 is a free parameter to the method, acting as a kind of “seed”.

One thing that is critical to note is the following. Consider a view Dy,
wlich is then filtered to include only records for a particular inember z§' € X
of a particular dimension X% ¢ X; in other words, let J’ be deter mm(d by
the relational expression where X* = x3°. Then in the new view Dj ;.. [ BT

positive only on the fibers of the tensor X where X0 = 550 , and zero elsewhere.
Thus the variable X' is eflectively removed from the dimensionality of D', or
rather, it is removed from the support of D',

Notationally, we can say DI.X,U _gio = D, o). X0 = . Under the normal
convention that 0 - log{0) = 0, our information measures H D, and G above are



insensitive to the addition of zeros in the distribution. This allows us to compare

the view D
This is illustrated in Table 3 through our continuing example, now with the

1.X70 =310 to any other view of dimensionality I >~ {ip}.

filter where Y = b. Although formally still a cube X x Y x Z, in fact this view
lives in the X x Z plane, and so can be compared to the X x Z marginal.

Table 3. Our example data tensor from Table 1 under the filter where Y = b; M’ = 34.

Finally, some caution is necessary when the relative entropy H(f7[I)|I2]) is

calculated from data, as the magnitude of the relative entropy between empir-
ical distributions is strongly influenced by small sample sizes. To counter such
spurious effects, we supplement each calculated entropy with the probability
that under the null distribution that the row has the same distribution as the
marginal, of observing an empirical entropy larger or equal to actual value. When
that probability is large, say greater than 5%, then we consider consider its value
spurious and set it to zero before proceeding with the algorithm.

4.2 Method

We can now state the hop-chaining methodology.

1.

2.

Set the initial filter to J = Nj;. Set the initial projector I = {1,2}, deter-
mining the initial view f7[I] as just the initial X! x X2 grid.

For each row 41 € X!, we have the distribution fX ==« (1] of that row, and
also the marginal f/[I ~ {X'}] over all the rows. In light of the discussion
above, we can calculate all the Hellinger distances between each of the rows
and this row marginal:

GUX' == 1], /I~ (X)) = GUX = [~ (XU, 71~ (X)),

and retain the maximum value G' := max; , ex1 G(fxl:’“k'[l],fj[l ~
{X'}]). We can dually do so for columus against the column marginal:

GUY = (1), IS (X)) = GUP e [~ (XY, 71T~ (X)),

retaining the maximum value G* := max; , ¢ x> G(f X ==e21], f[I ~ {X?}]).

. The user is prompted to select either a row z} € X! or a column zZ € X2.

Since G! (resp. G2) represents the row (columm) with the largest distance
from its marginal, perhaps sclecting the global maximum max(G!, G?) is
most appropriate; or this can be selected automatically. Letting =, be the
selected value from the selected variable (row or column) ¢ € I, then J' is
set to where X*' = x/, and this is placed in the background filter.



4. Let i € I be the variable not selected by the user, so that I = {7/,7"}.

5. For each dimension 1" € Ny ~ I, that is, for each dimension which is
neither in the background filter R? = {4’} nor retained in the view through
the projector {i"}, calculate the conditional entropy of the retained view
F7'[{i"}) against that variable: H(f” [{i”}|{i"'}]).

6. The user is prompted to select a new variable i € Ny ~ I to add to the
projector {i”}. Since argmin H(f’ [{s"}|{#"}]) represents the variable with

P ENy
the most constraint against ¢/, that niay be the most appropriate selection,
or it can be selected automatically.

7. Let I' = {¢",#"}. Note that I' is a sibling to 7 in BY, thus the name “hop-
chaining”.

8. Let I’,J’ be the new I, J and go to step 2.

Keeping in mind the arbitrary permutation of the X%, then the repeated
result of applying this method is a sequence of hop-chaining steps in the view
lattice, building up an increasing background filter:

1 I={1,2},J =Ny

2. I ={2,3},J' = vhere X' = x}

3. 1" = {3,4},J"” = where X' = x},X* = x}

4. 1" = {4,5},J" = where X' = x},X? = x, X* = x}

4.3 Extension to Hierarchical Data Cubes

In Sec. 2.1 we introduced OLAP databases as data tensors with a hierarchical
structure, but in Sec. 2.2 we developed view discovery for non-hierarchical ten-
sors. We return now to consider view discovery in general for hierarchical OLAP
databases, and how we accommodate hierarchical structure in hop-chaining.

In any given two-dimensional OLAP view on say the projector [ = {1,2},
the entries actually correspond not to slots € X, but to cells p € P; and the
rows and columns not to collections of data items Y' C X%, but of members
Q' C P'. Q' is then reflected in the (foreground) filter J. In fact, these can be
arbitrary, drawing from different levels, perhaps showing Californiaon one row,
and Detroit on another, even within a Country -> State -> City hierarchy.
The only restriction is that you cannot have two pi,ph € P! with p} <' pi,
for example showing both California and Los Angeles. Mathematically, this
forces our selection Q* to determine an antichain of P

“Drilldown” and “rollup” are some of the primary operations available in
OLAP. If X! = “Location”, and p} = “California”, then classical drilldown
might take a row like California from a view, restrict J with the relational
expression where Location= California, and then replace @' with all the
children of p§, so that Q1 = {p! <! pi}.

We are experiinenting with view discovery and hop-chaining formalisms
which operate over these member collections @', and in general over their Carte-
sian products Xier @ C P | I. But in the current formulation, it is sufficient
to consider cach dimension X involved in a foreground view to be drilled-down
to the iminediate children of the top of P, that is, the children of A11.



5 Implementation

We have implemented the hop-chaining methodology in a prototype form for ex-
perimentation and proof-of-principle. ProClarity 6.2 is used in conjunction with
SQL Server Analysis Services (SSAS) 2005 and the R statistical platform v. 2.7°.
ProClarity provides a flexible and friendly GUI environment with extensive API
support which we use to gather current display contents and query context for
row, column and background filter selections. R is currently used in either batch
or interactive mode for statistical analysis and development. Microsoft Visual
Studio .Net 2005 is used to develop plug-ins to ProClarity to pass ProClarity
views to R for hop-chain calculations.

A first view of the data set used for demonstrating this method is shown in
Fig. 3, a screenshot from the ProClarity tool. The database is a collection of
1.9M records of events of personal vehicles, cargo vehicles, and others passing
through radiation portal monitors (RPMs) at US ports of entry. The 15 available
dimensions are shown on the left of the screen (e.g. “day of the month”, “RPM
hierarchy”), tracking such things as the identities and characteristics of particu-
lar RPMs, time information about events, and information about the hardware,
firmware, and software used at different RPMs.
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Fig. 3. Initial 2-D view of the alarm summary data cube, showing count distribution
of RPM Role by months.

9 http://wuw.r-project.org


http://www
http:5eC:t"r1d.ry

6 Examples

Space limitations will allow showing only a single step for the hop-chaining
procedure against the alarm summary data cube.

Fig. 3 shows the two-dimensional projection of the X! = “RPM Role” xX? =
“Month” dimensions within the 15-dimensional overall cube, drilled down to the
first level of the hierarchies (see Sec. 4.3). Its plot shows the distributions of
count ¢ of alarms by RPM role (Busses Primary, Cargo Secondary, ete.) X1,
while Fig. 4 shows the distribution by Month X2,
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Fig. 4. Count distribution of months.

The distributions for roles seetn to vary at most by overall magnitude, rather
than shape, while the distributions for months appear almost identical. How-
ever, Fig. 5 and Fig. 6 show the same distributions, but now in terms of their
frequencies f relative to their corresponding marginals, allowing us to compare
the shapes of the distributions normalized by their absolute sizes. While the
months still seein identical, the RPM roles are clearly different, although it is
difficult to see which is most unusual with respect to the marginal (bold line).

The left side of Fig. 7 shows the Hellinger distance values G(fX =%« [I], f/|I ~
{X"¥]) fori ¢ {1.2}, that is the Hellinger distance for each row or column against
its marginal. The RPM roles “ECCEF” and “Mail” are clearly the most significant,
which can be verified by examining the anomolously shaped plots in Fig. 5. The
most sigrificant month is December, although this is hardly evident in Fig, 6.
We select the maximal row-wise Hellinger value G! = .011 for ECCF, so that
i = 1,25 = ECCF. XV = X! = “RPM Role” is added to the backgound filter,
X" = X? = Months is retained in the view, and we caleulate H(f7 [{2}]{i""}])
for all ¢ ¢ {3,4....,15}, which are shown on the right of Fig. 7 for all signif-
icant dimensions. On that basis X® is selected as Day of Month with minimal
H = 3.22.

The final view for X? = Months xX® = Day of Month is then shown in
Fig. 8. Note the strikingly divergent plot for April: it in fact does have the
highest Hellinger distance at .07.



P N e T
S¥B3:83322 883853 ¢¢2¢8
W z2Tesgsnn U # £3388
@ e o g w
o z 3

Fig. 7. (Left) Hellinger distances of rows and columns against their marginals. (Right)
Relative entropy of months against each other significant dimension, given that RPM

Role = ECCF.
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Fig. 8. Subsequent 2-D view of the alarm summary data cube.
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7 Discussion, Analysis, and Future Work

In this paper, we have provided the fundemantals necessary to express view
discovery in OLAP databases as a combinatorial search and optimization oper-
ation in general, aside from the specific hop-chaining method. What remains to
be addressed is a precise formal expression of this optimization problem. This
is dependent on the mathematical properties of our inforimation measures o, D,
and G over the lattices B, A. It is well known, for example, that H is a monotonic
function in B, in that ¥I; C I, H(f’[,]) > H(f’[I2]). There should be ample
literature (e.g. [29]) to fully explicate the behavior of these functions on these
structures, and move on the properties of search algorithms.

Also as mentioned above, we are restricting our attention to OLPA cubes
with a single “count” measure. Frequency distributions are available from other
quantitative measures, and exploring the behavior of these algorithms in those
contexts is of interest.

Finally, software implementations provide a tremendous value in performing
this research, not only for practical validation by sponsors and users, but also for
assisting with the methodological development itself. As our software platform
matures, we look forward to incorporating other algorithms for view discovery
[6,15,20,23-26], for purposes of comparison and completeness.
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