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Abstract. The capability of OLAP database software systems to han­
dle data complexity comes at a high price for analysts, presenting them 
a combillatorially vast space of views of a relational database. We re­
spond to the need to deploy technologies sufficient to allow users to guide 
themselves to areas of local structure by casting the space of "views" of 
an OLAP database a combinatorial object of all projections and sub­
sets, and "view discovery" as an optimization process over that lattice. 
We equip the view lattice with statistical information theoretical mea­
sures sufficieut to support a combinatorial search process. We outline 
"hop-chaining" as a particular view discovery algorithm over this ob­
ject, wherein users are guided across a permutatioll of the dimensions 
by for successive two-dimensional views, pushing seen dimen­
sions into an increasingly large background filter in a "spiraling" search 
proc(>.5s. \Ve illustrate this work in the cont.ext of data cubes recording 
summary statistics for ra.diation portal monitors at US ports. 

Introduction and Related Work 

OnLine Analytical Processing (OLAP) [1,7,8] is a relational database 
providing users with rapid acces.'5 to summary, aggregated views of a 
database, and is widely recognized for knowledge represenLation and discovery in 

dimensional n~l!\tional databases. OLAP technologies provide intuitive and 
complex set of possible summary views avail­

able in relational (SQL) structured data [21]. But the ability of 
OLAP database fioftware systems, such as the industry-leading Hyperion4 and 
ProClarit/' platforms, to handle data complexity comes at a high price for an 

The available portions and of the overall data space present 
wide-ranging, combinatorially vast, space of options. There is 

an urgent need for kllowledge discovery techniques that guide users' knowledge 
discovery tasks; to find relevant patLerns, and anomalies; and to do so 
within the intuitive interfaces provided by "business intelligence" OLAP tools. 

the Generalized Data-Driven Analysis and Integration (CDDAI) 
[10], our team has been developillg both pure alld hybrid OLAP datn 

4 http://www.oracle.com/technology/products/bi/essbase/visual-explorer.html 
u http://www.microsoft.com/bi/products/ProClarity/proclarity-overview.aspx 

http://www.microsoft.com/bi/products/ProClarity/proclarity-overview.aspx
http://www.oracle.com/technology/products/bi/essbase/visual-explorer.html
http:proc(>.5s


analysis capabilities for a range of homeland security applications. The over­
all GDDAI goal is to provide a seamless integratiou of analysis capabilities, 
allowing analysts to focus OIl understanding the data instead of the tool.s. We 
describe GDDAI's approach to knowledge discovery in OLAP data cubes IlS­

ing information-theoretical combinatorial optimization, and a..<; applied in the 
ProClarity platform on databases of surveillance data from radiat.ion monitors 
at. US ports of entry. We aim at a formalism for user-assisted knowledge discovery 
in OLAP databases around the fundamental concept. of view chaining. Users 
are provided with analytical feedback to guide themselves to areas of high local 
structure within view space: that is, to significant collections of dimensions and 
data items (columns and rows, respectively), in an OLAP-structured database. 

OLAP is fundamentally concerned with a collection of N variables Xi and a 
multi-dimensional data relation over their Cart.e.sian product X := X: Xi.

1 
Thus formalisms for OLAP data analysis are naturally rooted in relational 

database theory, and OLAP formalisms [2,9, 

algebras, for example extending the SQL language to its multi-dimensional ana­

log MDX6 But OLAP shares mathematical connections with a range of multi­

variate analytical approaches operable on the space X, for example statistical 

databases [27J; the analysis of contingency tables [4]. hierarchical log-linear mod­


; grand tour methods in multi-variate dat.a visualization [3]; projection 
pursuit [19J; data tensor analysis [13J; and recollstructibility analysis [12,20J. 

Our ultimate goal is to place OLAP knowledge diticO\'cr~' methods within a 
mathematical context of combinatorial Optilllizl1t.iol] in such a manner as to be 
realizi\ble within existing industry-standard dilt al)H~e !lilt f(llms. Specifici\lIy: 

Givcll i\ fouudatiOllill OLAP databaseellgiliP platJol'm Es..~B"se7, SSAS8 ); 


Aud an OLAP client with technology for graphical display and an intuitive 

interface (e.g. Pl'OClarity, Hyperion); 

Cast the space of views (sub-cuba<;) of all OLAP datab'l.'ie as a combinato­

rial, lattice-theoretical structure; 

Equipped with stat.istical measures reflectillg the stl't!cl Ilml relations among 

views (their dimensional scope, depth, etC'.) in the context of the data ob­

served within 

To support both automated search to areas of high local structure; 

And user-guided exploration of views in the context of these mea..<;ures. 


While we believe that our emphasis on a cOlllbinatorial approach is distinct, 
our work resonates with that of a number of others. Om process of "view chain­
ing" , or moving from one projected subset of a data cuhe to another intersecting 
in dimensionality, is similar to the navigational processes de.'icribed others [23­

, and anticipated in some of our prior work [II]. But we note that approaches 
which seek out "drill-dowll paths" [6J only "descell<i" the dew lattice along one 
"axis" of views with increasing dimensional extensjoll, sequentially adding vari­
ables to the view at eHch step. III contrast, our "hop-chailling" technique chains 

u http://msdn.microsoft.com/en-us/library/ms145506.aspx 
7 http://~~~.oracle.com/appserver/business-intelligence/essbase.html 
8 http://msdn.microsoft.com/en-us/library/ms175609(SQL.90).aspx 

http://msdn.microsoft.com/en-us/library/ms175609(SQL.90).aspx
http://~~~.oracle.com/appserver/business-intelligence/essbase.html
http://msdn.microsoft.com/en-us/library/ms145506.aspx
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through a sequence of two-dimensional views, affecting a permutation of the 
\·ariahles X'. 

Our overall is consistent with an of simi­
on information theoretical statistical measures in data cubes 

for making choices [20,22]. some 
other researchers have used different statistical approaches, for vari­
ance estimation [25] or skewnes.'O measures [15]. Our primary departure from 
traditional OLAP analysis is the extension to conditioning and conditional prob­
ability measures over views, This not only provides the basis for optimization 
and navigation, it also creates a strong connection to graphical or structural sta­
tistical models [5,29]' graphoid logics [16,28]' as well as systems-theory based 
structural model induction methodologies 

We by establishing concepts and notation for of OLAP 
databases as hierarchical data tensors, and then define the view lattice over 

unconditional) views. This brings liS to a point where we can 
the fundamental OLAP projection, extension, filtering, and 

(decreasing a filter). We introduce conditional views and the com­
plex combinatorial object which is the conditional view space, This prepares 
us to introduce "hop-chaining" as a particular view discovery algorithm over 
this combinatorial object, wherein llsers are guided by ('ondiLiomti information 
measures across a permutation of the dimensions by searching for successive 
two-dimensional views, pushing seen dimem;ions in a i'spiraling" search proCE'.'3S 
into an large background filter. vVe thell illustrate on 
databases of surveillance data from radiation lllonitnrs at US ports of entry. 

OLAP Formalism 

Alt.hough the mathematical tools required to analyze OLAP databases are rela­
tively simple, t.heir notational formalisms are inevitably, and not [2, 
9, :30] 'While our formalism is similar, it differs in a llllillbel' of ways a,.s well: 

\Ve combine projections I Oil dimensions and restrictions J on records into 
it lattice-theoretical obiect called a view 1)l.J, 

a "IllCilsure'· (a qUllntity tracked and 
as an count or a number of records. 

Sllch count measures support the of 
and thus information-theoretical measures, over cube views. Thus we do 
not deal with other quantitative measures, or tile general distinction and 
interaction betwcc.en mea,.~ures and dimensions, 
Our view discovery method is available on Hat dilllellsions which are not 
hierarchically-structured to support roll-up aggregation nnd drill-down clis­

operations. l3ut for complet.eness wit.hin an OLAP context, we 
introdnce the notation and concepts for hierarchiCitl dimensions, develop our 

lethoclology without them, and then return to discuss how we handle drill­
dowll in our practical application, and suggest the way forward to future 
extension to the full hierarchical case. 

http:betwcc.en


2.1 Data Cubes as Hierarchical Data Tensors 

Let, N = {L2, .. .},NN {l,2, .,N}. For some N E N, define a data cube 
a:; an N-dimensional hierarchical dat.a t.ensor V (X, X, Q, c) where: 

X := {Xi};"'"l is a colledioll of N variables or columns with Xi 

{Xki}f=l E 
X XX'EX X' is an overall data space or data schema whose members 
are N-dimensional vectors x = ,Xk2'''',XkN) = (X~; E X called 
slots: 

,- Q {pi};"'c.) is a collection of N partially-ordered hierarchical dimensions 
(Pi, ::;i) with members pi E . Each partially-ordered set 

pi is isomorphic to a sub-poset of the Boolean lattice 5 i = (2X' , which 

is the power set of the values of the variable X' ordered by set inclusion. 
We map each subset yi <;;; Xi to its corresponding member pi E pI, and 
denote y! E pi for simplicity. In particular for each x' E Xi, {X'} E pi is an 
atom of The order relation ::;' is then isomorphic to a slIb-relation of the 
subset relation Additionally, each partial order implies the covering 
relation -<', where p -<i pi means t.hat p pi and p is an immediate child 
of p'. While ill principle each poset pi could be as large &<.; the full power 
set, ill prac:tice, they are trees, with X' and Vxi E Xi. {xi 1E pi. 

: X W. I, ...} is a count functioll. 

Let j\1 :LxEX c(x) he the totaillumber of rec:ords ill the database. Then 
V also lliCC; relative freq1lencies f on the cells, so that f : X [0. Ji. where 
f(x) = , and thus f(x) 1. 

We call identify the OLAP space or cube schema as P I ' soX:
that each pEP is a celL We then have the hierarchica.l COllnt fUIlction c : 
P -> N. where c(p) := LxS;p c(x), and ::;:= X: 1 ::;i, the product order of the 
hierarchies. Note that we can also define c recursively, 

Mx} p
c(p) 

p 

There is also the hierarchical frequency function j : P [0, IJ, with j(p) 
In an OLAP database context, the variablf1'i E X correspond to columns 

in a relational data table; the dimensions pi E Q to the dimensions of an OLAP 
cube; veetors x E X to the rows of a fact table; the vectors pEP to the cells in 
an OLAP cube; and the counts c(p) to the values stored in the p cell of a cube. 

An example of a dRta tensor is shown in T;tble I, for X {Xl, X2, 
{ Y,Z},withX {(X,iJ}'Y {a,/I,c}.Z {x.y,z.w}.so that N =:3. The 
table shows the counts c(x), so that M 74. and the frequencies f(x). III 
we can assume t.he entire power set 5 i = 2x ' as it natural hierarchy 011 each Xi, 
but we can additionall'y a..';sert a more specific tree hierarchy = (p:J, ::;3) 011 

with p3 = {x,v.z,w.r {X.1/l.S -= {z,w},t -0- Z}. Then we have e.g. a 

http:x.y,z.w}.so


x 
n 

Table 1. An example entries repeat the elements above, and rows 
with zero counts are suppressed. 

slot X b, y) X and a cell 11 s) C P. Note that 
I), b, w)) = 6, = 0.082. 

2.2 Views and Chaining Operations in the View Lattice 

In this section we consider only the non-hierarchical case where VP' E Q, P' = 

X', and 0. Then X = P, and D becomes a data tensor, or an N-
dimensional table. We return to hierarchical data cubes in Sec. 4.3. 

At any time, we may look at a projection of D along a sub-cross-proe!uct 
involvillg only certain dimensions I C NN. Call I a projector, and denote 
x 1 I (.1'k') lEI X 1 I where X 1 [ X'EI Xi, as a projected vect.or and 
dilta cube. \\'c write xli for x 1 {i}, and for projectors 1 c:, l' ane! V(;ct.ors 
x, y E X, we m5e x J 1 ~ y 11' to mean Vi E T, xli y 1 i. 

Count and frequency fUllctions convey to the count and 
functions d 11 . XLI > N and ifII : X 1 I -t rO, 1], so that 

1)= L (I) 
x'lNN2xjI 

1 I) = L 
x' INN ;2::cli 

and Xli f[I](x 1 I) 1. In words, we add the counts (resp. frequencic.<-;) 
over vectors in y E X such that y 1 1 xlI. This is just the process of 
building the I -margillal over f, seen as a joint distribution over the Xi for i C 1. 

AllY set of record indices J <:;; NM is called a filter. Then we call consider 
t.he filtered count functioll c.! : X -t {D, I, ...} and frequency function I' : X 

IJ whose values are reduced by the restriction in J now determining 

AI[':= L M 
",EX 

\Ve renonnalize the over the lvI' to derive 

i J (x) = 
lvI' ' 



so that still LXEX j] (x) 1. 
Finally, when both a selector I and filLer.] are available, then we have 

X 1 l --t {a, 1, .. .},j]!l] : x 1 l [0,1] defined analogously, where now 
LxllEXjl j][l](x 1 I) 1. So given a dat.a cube V, denote Vr,] as a view 
of V, restricting our at.tention to just the J records projected onto just the I 
dimensions X 1 I, and determining count cJ[I] and frequency j.l[1] functions. 

In a lattice theoretical context, each projector I ~ NN can be cast as a 
point in the Boolean lattice 8 N of dimension N called a projector lattice. 
Similarly, each filter J C NM is a point ill a Boolean lattice 8 M called a filter 
lattice. Thus each view VI.] maps to a unique node in the view lattice 8 
8 N x 8 M 2N x 2M , the Cartesian product of the projector and filter lattices. 

We then define chaining operations as transitions from an initial view VI,] 
to another VI'.] or Vr.]', corrpBponding to a move in the view lattice 8: 

Projection: Removal of a dimension so that I' I" {i} for some i E I. This 
corresponds to moving a single step down in 8 N , and to marginalization in 
statistical analyses. We have Vx' 1I' E X 11', 

(Xl II') = :L 
xU;2x'JI' 

Extension: Addition of a dimension so that I' I u {i} for some i 9: I. This 
corresponds to moving a single step up in 8 N . Rather than aggregating, 
we're 1I0W disagg-regating or distr'ibllting information about the I dimensions 
over the I' " I dilllellsions. Notatiollally, we have the converse of (5), so that 
Vx If X II, 

(x 1L 
x'll';2xJI 

Filtering: Removal of records by strengthening the filter, so that J' C 1. This 
corresponds to moving potentially llluitiple steps dowll in 8 M . 

Flushing: Addition of records by weakening (reversing, flushing) the filter, so 
that J' ::2 J. Corresponds to moving potentially multiple steps tip in 8 M . 

Repeated chaining operations thus lIlap to trajectories in 8. Consider the 
very small example shown in 1 for N M = 2 with dimensions X ~ 
{X, Y} and two N-dimensional data vectors a, b E X x Y, and denote e.g. 
X / ab = {a 1 {X}, b 1 {X}} The left side of Fig. 1 shows the separate pro­
jector and selector lattices (bottom nodes 0 not shown ), with extension as a 
transition to a higher rank in the lattic.e and projection as a downward tran­
sition. Similarly, filtering and flushing are the corresponding operations in the 
filter lattice, The view lattice is shown 011 the right, along with a particnlar chain 
operation V{X.y}.{a} f ,Dp'}.{aj, which projects the subset of records {a} from 
the two-dimensional view {X, Y} X to the one-dimensional view {X} ~ X. 

2.3 Relational Expressions and Background Filtering 


Note that usually l\J » N, so that there are far more records than dhnell­

cc­siom, (in our example, M ~ 74 > 3 N). In principle, filters J 



"XY/ab, 
Extend Flush """'/" \.............
XY _ X/a~.... "4.Y/ab,. , IT /ab",xJI ""~ II a b -L ~X Y XIi.Y/a......,...,::.:XYIb-..!, 
Project Filter ~/ .....;' ... ... 

X/a -"""" '" Y/a " XIb YlbDimensions {X, Y} Vectors a,b in X x Y 

Fig. 1. The lattice theoretical view of data views. (Left) The projector flnd filter lattices 
l3 N

, l3~f (global lower bounds 0 not shown). (Hight) The view Iflttice l3 as their product. 
The projection chain operation D{X,l'}.{u} ,....., Dpq{a} is shown as a bold link. 

which records to include in a view can be specified arbitrarily, for example 
through any SQL or MDX "where" clause, or through OLAI' operations like 
"top n", including the 'It records with the vallie of some feature. In 
practice, filters are specified as relatiollill in terms of the dimen­
sional vaJUE'B, a..'l ill l\1DX where clauses. In our example, we 
say where X a and (2 y and 2 >= x). order on the Z 
variable to determine a filter J specifyillg those 20 out of the total possi­
ble 74 records. For notational purposes, wc will therefore sometimes use these 
relational to indicate the corresponding filters. 

Note that each relational filter expression references a certain set of 
in this case X and denoted as Ii ~ NN Compared to our projector I, R 
naturally dividc~s into two groups of vari<lhl(·~: 

Foreground: Those variables in RI := H 1'1 I which appear ill both the filter 
expression and are included in the curren! projection. 

Background: Those variahles in R" := R" I which appear only in the filter 
expression, but are not part of the Cllrrellt 

The portions of filter expressiOIl;'; 
rows and columns in the OLAP tool. can have 
many sonrceH, such a..'l Show Only or Hide. It is common to select a collection 
of siblings within a sub-hnlllCh of the pi tree. For example for a 

the user within the ProClarity tool select "All -> 
USA -> California" or its children "California -> CiUcB", all siblings. But 
those portions of filter invoil'ing background variables do not change 
which rows or columns arc displayed, but ollly serve to reduce the values shown 
in celis, In ProClarity, these are shown in the Background pane. 

2.4 Example 

Table 2 shows the results of four chainillg operations from our original example 
in Table I, including a projection I = {1.2,:3} ,., l' {1,2}, a filter using 
relational expressions, and a filter lIsing a uon-relational The bot­
tom right shows a hybrid result of applying both the [' = {I, 2} and 
the relational filter exmessioll where X = () and (Z <= Y and Z >= 



this to the top left) where there is re::;trictiol1 for the same 
Isionality because of the use of a filter. Here I = {X, Y}, R 

{X,Z},Rf {X},Rb {Z},M' 20. 

x y C[I'](X1DI'](X) 
a 	 a 11 0.150 x Y Z CJ'llX)ff (x) 

b 24 0325 Q a x 1 0.050 
c 15 0.203 b x 9 0.450 

(3 	 a j 0.014 C :1: 2 0.100 
b 101 0.136 Y 8 0.400 
c 13 0.176 

X Y Z cJ' (x) fJ' (x) 

a f) w 15 0.333 


x 9 0.200 

c y 8 0.178 

a w 7 0.156 


/3 c x 6 0.133 
Table 2. Results from chaining operations VI';.,·.f'i M ~ V1'.J' from our original data 
cube in Table 1. (Top Left) Projection: I' = {1, 2}, M' A1 74. (Top Right) 
Filt.er: J' = where X = a and (Z y and Z >~ x). M' 20. (Bottom Left) Filter: J' 
determined from top 5 most frequent entries. Ai' 45. (Bottom Right) I' = {I, 2} and 
J' determinued by the relational expression where X = a and (Z <= Y and Z 

3 Information Measures on Conditional Views 

For this section, we will generally consider til(' filter J to lw fixed, ilnd supress 
the superscript on f, unle.<;s otherwise needed. 

3.1 Conditional Views 

We have seen that the frequencies f . X ]0. 1] represent joint probabilities 
f(x) f(Xk1)Xk2) ,,,,XkN). so that frolll (2) and (5), f[/](x 1 I) expresses 
the I-way marginal over a joint probability distribution f. Now consider two 
projectors I]) 12 c;:;: !'IN. so that we can define a conditional frequency 1[111121 : 
X 1 h U 12 [0) 1] where I[Illh] := JI~i;~;2J. For individual vectors, we have 

Ih](x) 111 U 

is the probahility of the vector x 1 11 U h restricted to the huh 
dirnensiomi given that we know we can only choose vectors whose restriction 
to 12 is x 1 h We note that f[ld0](x) ~ f[ItJ(x» f[01I2J 1, and since 

112] f[ll" 12112], in general we call assume that I] and 12 are disjoint. 
\Ve can now extend our concept of a view to a conditional view 1)11 1/2.) 

as a view Oil 1)I1UI2 ,.!, which is further equipped with the conditional 
. Conditional views 1)/11/2 .) live ill a different combinatorial structure 

than the view lattice [3. To describe hi [2 and .J in a conditional view, we need 
three sets I J , h E NN and J NM with I] and 12 disjoint. So define A 

x 2M where 3[NJ is a poset with the following st.ructure: 



N + 1 levels numbered from the boUom 0,1, .. . N. 

The level contains all partitions of each of the "et" in (~l). that is tht' 

~-element subsets of NN, into two parts where 


L 	 The order of the parts is significant, so that [{ L 3}, and UI}. { 1, 3}1 
of {l, 3, 4} are not 

2. 	 The empty set is an allowed member of a ,3,-t},01 is in 
the third level of 3[NI for N 2: 4. 

"Ve write the two sets without set brackets and with a them. 
-	 The partial order is by an extended subset relation: if It JI , alld 

[2 l21) then hlh-< 112 " e.g. 1 213 -< 1 2 413. 

An element in the poset 3lN ] corresponds to an llih by letting 
be the elements to the left (reA~p. of the I. We call this poset 
if" size is 3N and it really corresponds to partitioning 
sets, the first being h, the second being 12 and the third 
The structure 3[21 is shown in Fig. 2. 

Fig. 2. The structure 

3,2 Information Measures 

So given a view Vl,) B which we identify with its frequency I'll], or a 
conditional view Vldl2J E A which we identify with its conditional frequency 
r' we are intere.sted in measuring how "interesting", "UIHlsIWI", or how 
much information content is present. Such rnea'iures can then be used for combi­
natorial search and optimization over the view structures A- vVe use some of 
the standmd, and some not so widely used, measures from information 

for an unconditional view V I.J, we can deAne the entropy measure 
J) 

lJ(f.I[JJ) := [!](x) 
",EXIT 

l\laxilllllll1 entropy corresponds to a "flat" uniform distrihutioll, so other things 
being equal, users have an interest in views with lower H. Given a conditional 
vicw we also have the conditional entropy, H(rIIIII12]), where 

H(fJ[h u l2]) [fU J 



Given two views VI,), VLJ' of the same dimensionality I, but with different 
filt.ers J aud J', we have the relative entropy (directed divergence, or I<ullhack­
Leibler divergence) 

jJ[Ij(X))DUJ[l] [ID L [Ij(x) log ( jJ'[I](x) , 
xEXlT 

and the Hellinger distance 

2 

GUJ[I], jl' /I:. (jr'[I] (x) Vj.J'[I](X)) 
~ ;U~!l 

We prefer G to D, since it is "ymmetric, less sensitive to 7-eros in the distribution, 
and it can be shown that for di"tributions that are bounded away from zero and 
close to one another, D is equal to first order to the square to oue quarter of the 
square of G [17]. 

4 Hop-Chaining View Discovery 

Given our basic formalism on data views, conditional views, and information 
measures on them, a variety of possible user-guided navigational tasks become 

For example, above we discllssed Carioll et ai. [6], who develop meth­
ods [or discovering "drill-down paths" in data cubes. Vile call describe this as 

it series of \'iews with projectors h h:2 1:3 of 
tli lllensional structure. 

Om approach is motivated by the idea that most users will he dmllellged 
by complex views of high dimensionality, while still needing to explore ll1,tny 
possible data interactions. We are thus interested in restrictillg om users to 
two-dimensional views only, producing a sequence of projedoni I r, h, h where 

2 and I h n h+rI 1, thus affecting a permutation of the variables Xi. 

4.1 Preliminaries 

\Ve assume a fixed but arbitrary permutation of the i NN so that we caB refer 
to the dimensions Xl, X2, ... , X N in order. The choice of the initial variables 
X I, X2 is a free parameter to the method, acting a.s a kind of "seed". 

Oue t.hing that. is critical to note is the following. Consider a view V r..] 
which is then filtered to include only records for a particular member .1::';' EX'" 
of a particular dimension Xio EX; in other words, let J' be determined by 
the relat.iollal expression where Xi, = . Then ill the new view V~.J" I'l ' [I] is 

positive only OIl the fibers of the tensor X where Xio x~o, and zero elsewhere. 
Thus the variabJe X'" is effectively removed from the dimensionality of V', or 
rather, it i::; removed from the support of Vi 

Notationally, we can say VI.X-" ~ V1'{io}.XiO Under the llOrIllal 
cOllvention that 0 ·log(O) 0, our information measures D. and G ahove are 



insensitive to the addition of zeros ill the distribution. This allows us to compare 
the view VI.X'o=x~o to any other view of dimensionality I" {io}· 

This is illustrated in Table 3 through our continuing example, now with the 
filter where Y = b. Although formally still a cube X x Y x Z, in fact this view 
lives in the X x Z plane, and so can be compared to the X x Z marginal. 

XYZ c(x) f(x) 
0: b :1" 9 0.265 

1.1) 15 0.441 
(3 Y 4 0.118 

z 30.088 
1.1)11 31 0.088 

Table 3. Our example data tensor from Table 1 under the filter where Y= b; M' = 34. 

Finally, some caution is necessary when the relative entropy H(fl [Illh]) is 
calculated from data, as the magnitude of the relative entropy between empir­
ical distributions is strongly influenced by small sample sizes. To counter such 
spurious effects, we supplement each calculated entropy with the probability 
that under the null distribution that the row has the same distribution as the 
marginal, of observing an empirical entropy larger or equal to actual value. When 
that probability is large, say greater than 5%, then we consider consider its value 
spurious and set it to zero before proceeding with the algorithm. 

4.2 Method 

vVe can now state the hop-chaining mcthodology. 

1. 	 Set the initial filter to J = NM . Set the initial projector I = {l. 2}, deter­
mining the initial view /1 [I] as just the initial Xl x X 2 grid. 

2. 	 For each row Xkl E Xl, we have the distribution /Xl=Xkl [I] of that row, and 
also the marginal /1[1" {Xl}] ovcr all the ro\~. In light of the discussion 
above, we can calculate all the Hellinger distances between each of the rows 
and this row marginal: 

G(fXl=Xkl [I], /1[1" {Xl}]) = GUXl=J,.l [I" {Xl}], /1[1" {Xl}]), 

and retain the maximum value G I := lllaxI',lEXl G(fXl=Xkl [I], /1[1 
{Xl }]). We can dually do so for columns against the column marginal: 

G(fX2=Xk2 [I], /1[1" {X2}]) = G(fX2=Xk2 [I" {X2}], /1[1" {X2}]), 

retaining the maximum valueG2 := maxx ,2EX2 G(fX2=Xk2 [I], /1[1" {X2}]). 
3. 	The user is prompted to select either a row X6 E Xl or a column x6 E X2. 

Since G I (resp. G2 
) represents the row (columll) with the largest distance 

from its marginal, perhaps selecting the global maximum max(G I, G2 ) is 
most appropriate; or this can be selected aut.omatically. Letting x~ be the 
selected value from the selected variable (row or column) i' E I, then J' is 
set to where Xi' = x~, and this is placed in the background filter. 



4. 	 Let i" E [ be the variable not selected by the user, so that [ = {i', 
5. 	 For each dimension i'" E NN " l, th"t is, for each dimeIlsion which is 

neither in the background filter Rb {i'} lIor retained in the view through 
the projector {i"}, calculate the condit.ional entropy of the retained view 
fJ'[{i"}] against that variable: HU.l' 

6. 	 The user is prompted to select a new variable ifl/ E NN " I to add to the 
projector {i"}. Since argmin 11 (f.l' [{i"}I{ iff'}]) represents the variable with 

iUlENN""I 

the most constraint against i", that may be the most appropriate selection, 
or it can be selected automatically. 

7. 	 Let I' = {i", i'll}. Note that I' is a sibling to [ in B N , thus the name "hop­
chaining" . 

8. 	Let I', J' be the new [, J and go to step 2. 

Keeping in mind the arbitrary permut.ation of the Xi, then the repeated 
result of applying this method is a sequence of hop-chaining steps in the view 

building up an incre&'ling background filter: 

1. 	 [={1,2},J=NM 
2. 	 I' = {2, 3}, J' where Xl x5 
3. 	 [" = {3, 4}, J" = where Xl = X~, X2 x~ 
4. 	 [III = {4, 5}, Jill = where Xl = x5, X2 x~, X3 '" x~ 

4.3 Extension to Hierarchical Data Cubes 

III Sec. 2. l we introduced OLAP datab<lses as data tensors wit.h a hierarchical 
structure, but in Sec. 2.2 we devclopc'(l vic\\' discO\cry for nOIl-hicrarchical ten­
son;. \Ve return now to consider view discoH'TY in general for hierarchical OLAP 
databases, and how we accommodate hierarchical st.ructnre in hop-chaining. 

In any given two-dimensional OLAP view Oil say the projector [ {I, 
the entries actually correspond not to slots x E X, but to cells pEP; and the 
rows and columns not to collections of dat.a items Y' Xi, but of members 
Qi c:: pi. Qi is then reflected in the (foreground) filter .I. In fact, these can be 
arbitrary, drawing from different levels, perhap:; showing California on one row, 
and Detroit on another, even within a Country -> State -> City 
The only restriction is that you call not have t.wo 11\, p~ E pi with p~ 
for example showing both California and Los Angeles. Mathematically, this 
forces our selection Qi to determine an antichain of P' . 

"Drilldown" and "roHup" are some of t.he primary operations available in 
OLAP. If Xl "Location", and P6 = ;'Califomia", t.hen cla.ssical drilldown 

take a row like California from a view, restrict .I with the relational 
expression where Location California, and t.hen replace QI with all the 
children of P6, so that Q'I {pl::;1 

We are experimenting with view discovery and hop-chaining formalisms 
which operate over t.hese member collections Q' , and in general over their Carte­
sian products X iEl Qi c:: P 1 I. But in the current formulation, it is sufficient 
to consider each dimension X' involved ill a foreground view to be drilled-down 
to the immediate children of the top of P' , that is, the children of All. 



5 Implementation 

We have implemented the hop-chaining methodology in a prototype form for ex­
perimentation and proof-of-principle. ProClarity 6.2 is used in conj unction wit h 
SQL Server Analysis Services (SSAS) 2005 and the R statistical platform v. 2.79 

ProClarity provides a flexible and friendly GUI environment with extensive API 
support which we use to gather current display contents and query context for 
row, co lumn and background filter selections. R is currently used in either batch 
or interactive mode for statistical analysis and development. lvlicrosoft Visual 
Studio .Net 2005 is used to develop plug-ins to ProClarity to pass ProClarity 
views to R for hop-chain calculations. 

A first view of the data set used for demonstrating this method is shown in 
Fig. 3, a screens hot from the ProClarity tool. The database is a collection of 
1. 9M records of events of personal vehicles , cargo vehicles , and others passing 
through radiation portal monitors (RPMs) at US ports of entry. The 15 available 
di mensions are shown on the left of the screen (e .g. "day of the month", "RPM 
hierarchy"), t.racking such things as the identities and characteristics of particll­
lar RPMs, time information about events, and information about the hardware, 
firmware, and software used at different RPMs. 
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Fig. 3 . Init ial 2- D view of the alarm summary data cube, showing count distributio n 
o f RPM Role by mont.hs. 
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6 Examples 

Space limitatiolls will allow showing only a single step for the 
procedure against the alarm snmmary data cube. 

Fig. 3 shows the two-dimensional projection of the Xl = "RPM Role" xX2 

"Mont.h" dimensions within the 15-dimensiollal overall cube, drilled down to the 
first level of the hierarchies (see Sec. 4.3). Its plot shows the distributions of 
count c of alarms by RPM role (Busses Primary, Cargo Secondary, etc,) Xl, 
while Fig. 4 shows the distribution bv Month X2. 
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Fig. 4. Count distribution of months. 

ThE' dislrilJutiolls for roles sccm to vary at most by (Jverallillagnitude, rather 
than shapE', while the distributions for months appear almost identical. How­
ever, Fig. ;) and Fig. 6 show the same distributions, hut HOW in terms of their 
frequencies f relative to their correspondi 
the slwpE's of t he distributions normalized by their absolute sizes. While the 
Illonths still seem identical, the RPM roles are clearly different, although it is 
difficult to see which is most unusual with respect to the marginal (bold line). 

The left sidr of Fig. 7 shows the Hellinger distance values G(fXi =Xki 

{Xi} 1) for 'i C {I. 2}, that is the Hellinger distance for each row or column against 
its marginal. The RPM roles "ECCF" and "Mail" are clearly the most significant, 
which can be verified by examining t.he anomolously shaped plots in Fig. 5. The 
most significant month is Decemher, although this is hardly evident. in Fig. 6. 
\Ve select. the lllaximal row-wise Hellinger value G l ,Oll for ECCF, so that 
i'l, = ECCF. Xi' = Xl "RPM Role" is added to the backgound filter, 

= tllonLll1'l is retained in the view, and we calculate H(fJ' [{2}1 {i" /}]) 
for all i'l! C {3, ,L ' .. , 15}, which are shown Oil the right of Fig. 7 [or all 
iC<lnt dimensiolls. On that basis X 3 is selected as Day of f\Ionth with minimal 
H 3.22. 

The final view for X 2 = Months xX3 Day of Month is then shown in 
8. Note the strikingly divergent. plot for April: it ill fact does have the 

bighest Hellillger diHtance at .07, 
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Fig. 7. (Left) Hellinger distances of rows and columns against their marginals. (Right) 
Relative entropy of months against each other significant dimension , given that RPM 
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7 Discussion, Analysis, and Future Work 

In this paper, we have provided the fundernantals necessary to expre.'is view 
discovery in OLAP databases as a combinatorial search and optimization oper­
ation in general, aside from the specific hop-chaining method, What remains to 
be addressed is a precise formal expression of this optimization problem. This 
is dependent on the mathematical properties of our information measures H, D, 
and G over the lattices B, A, It is well known, for example, that H is a monotonic 
function in B, in that VII HUl[Id) ;:: H( rlfl?]), There should be 
literature (e.g. [29]) to 
structures, and move on the 

Also as mentioned above, we are restricting our attention to OLPA cubes 
with a single "COllnt" measure, Frequency distributions are available from other 
quantitative measures, and exploring the behavior of these algorithms in those 
contexts is of interest, 

Finally, software implementations provide a tremendous value in performing 
this re,search, not only for practical validation by sponsors alld users, but also for 
assisting with the methodological development itself. As oUl' software platform 
matures, we look forward to incorporating other algorithms for view discovery 

20,23-26]' for purposes of comparison and 
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