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Abstract
Scientific data centers comprised of high-powered computing equipment and large capacity disk stor-

age systems consume considerable amount of energy. Dynamicpower management techniques (DPM)
are commonly used for saving energy in disk systems. These involve powering down disks that exhibit
long idle periods and placing them in standby mode. A file request from a disk in standby mode will
incur both energy and performance penalties as it takes energy (and time) to spin up the disk before
it can serve a file. For this reason, DPM has to make decisions as to when to transition the disk into
standby mode such that the energy saved is greater than the energy needed to spin it up again and the
performance penalty is tolerable. The length of the idle period until the DPM decides to power down a
disk is called idleness threshold.

In this paper, we study both analytically and experimentally dynamic power management techniques
that save energy subject to performance constraints on file access costs. Based on observed workloads
of scientific applications and disk characteristics, we provide a methodology for determining file assign-
ment to disks and computing idleness thresholds that resultin significant improvements to the energy
saved by existing DPM solutions while meeting response timeconstraints. We validate our methods with
simulations that use traces taken from scientific applications.

keywords: Disk storage, Power management, File allocation, Scientific workload, Performance guar-
anttee

1 Introduction

The rapid growth in highly data-intensive scientific research has fueled an explosion in computing facilities
and demand for electricity to power them. Several analysts are now predicting that energy costs will even-
tually outstrip the cost of hardware in data centers [2]. As a result, reducing energy costs at data centers
has become the focus of multiple research efforts which are aimed at devising architectural strategies for
energy efficient computing systems. Examples of projects that are currently underway include the Green-
Light project at UC San Diego, DiskEnergy at Microsoft, GREEN-NET Project in INRIA and the Green
Grid Consortium.

There are multiple components that contribute to the power consumption in a data center such as servers,
storage, cooling, networks etc. However, recent papers estimate that about 25 -35 percent of the energy
consumption at data centers is attributed to disk storage systems [9]. This percentage of disk storage power
consumption will continue to increase, as faster and higher capacity disks are deployed with increasing
energy costs and also as data intensive applications demand reliable on-lineaccess to data resources.

Reducing the energy consumption of the disk storage system has been addressed in many recent re-
search works. Research efforts are directed at several levels such asphysical device level , systems level
and dynamic power management (DPM) algorithms. At the physical device level, disk manufacturers are
developing new energy efficient disks [23] and hybrid disks (i.e., diskswith integrated flash memory caches).
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At the system level, a number of integrated storage solutions such as MAID [5], PARAID [25], PERGA-
MUM [24] and SEA [26] have emerged all of which are based on the general principle of spinning down
and spinning up disks. Disks configured either as RAID sets or as independent disks, are configured with
idle time-out periods, also calledidleness threshold, after which they are automatically spun down into a
standby mode. A read or write I/O request targeted to a standby disk causes the disk to spin-up in order to
service it. This of course comes at the expense of a longer response time tofile access requests as well as a
penalty in terms of energy costs.

Dynamic power management (DPM) algorithms have been proposed to determine online when the disk
should be transitioned to a lower power dissipation state while experiencing anidle period. Analytical
solutions to this online problem have been evaluated in terms of their competitive ratio. This ratio is used to
compare the energy cost of an online DPM algorithm to the energy cost of an optimal offline solution which
knows the arrival sequence of disk access requests in advance. Itis well known [13] that for a two state
system where the disk can be in either standby or in idle mode there is a tight bound of 2 for the competitive
ratio of any deterministic algorithm. This ratio is achieved by setting the idleness threshold,Tτ, to β

Pτ
where

β is the energy penalty (in joules) for having to serve a request while the diskis in standby mode, (i.e.,
spinning the disk down and then spinning it up in order to serve a request) and Pτ is the rate of energy
consumption of the disk (in watts) in the idle mode. We call this value thecompetitive idleness threshold.

In this paper we focus mainly on read requests, we assume that write requests can be handled efficiently
by using any one of the energy-friendly approaches presented in the literature. For example, in [24] it is
recommended that files will be written into an already spinning disk if sufficientspace is found on it or write
it into any other disk (using best-fit or first-fit policy) where sufficient space can be found. The written file
may be re-allocated to a better location later during a reorganization process. Another recently proposed
strategy for energy saving for writes is called Write Off-Loading [18]. This technique allows write requests
on spun-down disks to be temporarily redirected reliably to persistent storage elsewhere in the data center.

1.1 Contributions of this paper

In this paper, we quantify the effects of disk power management on response time based on request work-
loads and disk characteristics. To the best of our knowledge, with the exception of the work in [28], very
little work has been done on modeling and analyzing the effects of power management on the response
time for file access requests using realistic workloads and disk characteristics. In addition, the trade-off
associated with using more or less disks on power consumption and response times has not been studied.

More specifically, our goal is to produce useful tools that can help in determining when power saving
policies should be used at all as well as optimal idleness thresholds and bounds on the number of required
disks needed in order to provide response time guarantees. Our main contributions are:

• We develop an analytic model of file requests served by a disk equipped withpower saving mecha-
nisms

• Based on this model, we develop a procedure called SmartIdle that computes several important pa-
rameters such as request arrival rate ”break-even” point that determines when power saving should
be applied, how many disks must be used to support response time constraints, and optimal idleness
thresholds

• We validate this procedure by applying it to two real life scientific application traces and show sig-
nificant improvement over common existing DPM strategies that usecompetitive idleness threshold
value to power down the disk.

The remainder of the paper is organized as follows. More details about related relevant work are pro-
vided in Section 2. In Section 3 our analytical model is described. In Section 4we present our procedure for
determining system parameters for maximizing energy savings while meeting performance requirements. In
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Section 5 we present our simulation model and results and in Section 6 an application of our model on two
scientific workloads is presented. Finally in Section 7 we present our conclusions and directions for future
work.

2 Related Work

Conserving energy in large scale computing has been recently explored in[8, 19]. Colarelli and Grun-
wald [5] proposedMAID for near-line access to data in a massively large disk storage environment.They
show, using simulation studies, that a MAID system is a viable alternative and capable of considerable en-
ergy savings over constantly spinning disks. A related system was implemented and commercialized by
COPAN systems [7,8]. This system, which is intended for a general data center, is not focused on scientific
applications and is not adaptively reconfigurable based on workloads.

The theory of Dynamic Power Management of disks has drawn a lot of attention recently from the
theoretical computer science community (see [13] for an extensive overview of this work). Most of this
work considers a single disk only and attempts to find an optimal idle waiting period(also called idleness
threshold time) after which a disk should be moved to a state which consumes lesspower. More specifically,
the problem discussed in these research works is based on the assumptionthat the disk can be transitioned
amongn power consumption states where theith state consumes less power than thejth state fori < j. The
disk can serve file requests only when it is in the highest power state (thenth state) which is also called the
active state. The system must pay a penaltyβi if a request arrives when the disk is in theith state, the penalty
is proportional to the power needed to spin up from statei to the active staten. The penalty is decreasing
with the state number, i.e.,β j < βi, f or j > i, and βn = 0.

The problem is that of devising online algorithms for selecting optimal thresholdtimes, based on idle
periods between request arrivals, to transition the disk from one powerstate to another. The most common
case transitions between two states namely, idle state (full power) and standby or sleep state (zero power).
The quality of these algorithms is measured by their competitive ratio which compares their power con-
sumption to that of an optimal offline algorithm that can see the entire request sequence in advance before
selecting state transition times. As mentioned before, for a two state system thereis a tight bound of 2 for
the competitive ratio of any deterministic algorithm.

There are also several results showing that with randomized online algorithms, the best competitive
ratio achievable improves toe/(e−1) ≈ 1.58 [14]. Response time penalty is not considered in these works.
Another approach to DPM [12], attempts to learn the request arrival sequence probability based on previous
history and then generates a probability-based DPM strategy that minimizes theexpected power dissipation.
It is known that power management schemes have an effect on the response time of the system. In [21]
an upper bound on the additional latency of the sys- tem introduced by power management strategies is
established.

More recently, it has been suggested that energy efficiency issues should become a first-class perfor-
mance goal for query processing in large data base management systems.Several research papers deal with
energy efficiency in DBMS using several benchmarks. Examples includethe JouleSort [22]and SPECPower
benchmarks which measure energy efficiency of entire systems that perform data management tasks.

In [20], the authors develop a power consumption model based on data from the TPC-C benchmark.
In [17], the authors provide a framework for trading off performanceand power consumption of storage
systems based on a graduated, distribution-based QoS model. This work deals with workload profiling
partitioning and scheduling to reduce energy consumption. In [10] energy-efficiency optimizations within
database systems are discussed. The experiments in [10] use a decision support workload (TPC-H) which
scans an entire table and applies a predicate to it. In [15] techniques for reducing power consumption
in DBMS are introduced. One such technique, called QED, uses well known query aggregation methods
to leverage common components of queries in a workload to reduce accesses to the storage system. The
technique involves some performance penalties as it is done by delaying somequeries in order to increase
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such leveraging opportunities. Other energy conservation techniques proposed are addressed in [3, 18, 19,
24,25,28].

3 Model

3.1 Definitions and Notations

In the section, we apply the M/G/1 queuing model, similar to the approach in [16, 26, 28], to estimate the
power cost and response time for a disk with a specific exponential arrival rate of file access and idleness
threshold. Table 1 displays the notations and parameters used in the model. The values for the parameters
of disk, e.g. Td , Tu, Pu, and Pd , are given based on the specification in [23].

Table 1: Notations and Disk Parameter values
Name Notation Default Value
DPS disk with power-saving mode
DNPS disk without power-saving mode
GPS Energy cost in one cycle byDPS (J)
TPS The length of one cycle for DPS (s)
PPS Power cost ofDPS (W) EPS/TPS

PNPS Power cost of DNPS (W)
P PPS/PNPS

Tτ Idleness Threshold (s) 10∼ 500
Td Time to spin down a disk (s) 10
Tu Time to spin up a disk (s) 15
Pd Power to spin down a disk (W) 9.3
Pu Power to spin up a disk (W) 24
Pτ Power in idle mode (W) 9.3
Pa Power in active mode (W) 13.0
Psby Power in standby mode (W) 0.8
Gdu Energy to spin down and up a disk (J) Pd ×Td +Pu ×Tu

Ta Length of a busy period entered from an idle state (s)
fTa(x) Length of a busy period entered from anx-second

warm-up state, consisting of partialTd and the whole
Tu (s)

λ arrival rate of file access (1/s) 0.1∼ 0.001
ρ traffic intensity for the disk λ×E[S]

E[S] Mean service time of a file (s) 7.56s
E[S2] 178.05s

3.2 Power Cost

In this sectionE[Y ] denotes the expected value of the variableY . In the following section we present an
anlytical model for estimating the power costs forDPS andDNPS within one cycle of power mode transitions
of a disk, where one cycle represents the time from the end of a busy period to that of the next busy period.
Since one cycle ofDNPS must consist of an idle period and a busy period, we can express the meanvalue of
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PNPS as

E[PNPS] =
Pτ ×1/λ+PaTa

1/λ+Ta
.

However, forDPS there are three different patterns in one cycle, as shown in Figure 1 where t represents
the time from the end of the last busy period to the arrival of the next request. Recall that under an M/G/1
model, if the arrival rate isλ, the time between two busy periods,t, is an exponential distribution with mean
= 1/λ. Ta denotes the length of a busy period entered from an idle state. We know thatthe mean ofTa under
an M/G/1 model can be expressed as

E[Ta] = E[S]/(1−ρ);

whereS denotes the service time andρ is the traffic intensity. Also,fTa(X) represents the length of a busy
period entered from anx-second spinning-up state, consisting of partialTd and the whole ofTu. Under the
M/G/1 model with setup time, the mean offTa(X) can be written as

E[ fTa(x)] = (1+λ× x)E[Ta];

wherex is the setup time [9], i.e., equivalent to the spin-up time in this work.

Figure 1: The three possible patterns in a cycle for DPS. The vertical axis, Vreq represents the total volume,
in bytes, of unserviced requests

Since each case has different occurrence probability in a period of one cycle,E[PPS] can be expressed
as

E[PPS] =
E[GPS]

E[TPS]
=

∑3
i=1 E[Gi

PS]P
i

∑3
i=1 E[T i

PS]P
i
;

whereE[Gi
PS], E[T i

PS], andPi are the mean energy cost, mean time period and probability of a request arrival
in Casei, respectively. The following three Cases occur depending on the arrival of a request. The details
of power cost and response times calculations are given in Appendix A.

Case 1, t < Tτ: This case indicates that a request arrives while the disk is idle but beforethe idle period
reaches the Idleness threshold value for it to begin spinning-down.

Case 2, Tτ ≤ t < Tτ +Td: Here an request arrives when the disk has been long enough past its idleness
threshold; it is in the process of spinning down but has not completely spun-down.

Case 3, (Tτ +Td) ≤ t: In this case the request arrives after the disk has completely spun-down.
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The mean response times can similarly be estimated for disks operating in power saving modeDPS. We
can calculate the mean sojourn timeθ of a request, i.e., its response time, by calculating the meanE[θ] for
each case. The details of these calculations are given in Appendix A.

3.3 Numerical Results

In this section, we illustrate our methods using the disks and workload characteristics in Tables 1 and 2.
Similar figures can be obtained using the analytical model developed. Figure2 plots the relationship between
E[PPS]/E[PNPS] andλ for Tτ = 0,10,53,and160. Whenλ < 0.029,PPS/PNPS would be smaller than 1, i.e.,
the power-saving mechanism is efficient since it is below the threshold ofλ. Figure 3 plots the corresponding
values for response times including the case forTτ = ∞. We note thatTτ = 53 is thecompetitive idleness
threshold in our case obtained byGdu/(Pτ −Psby).

Figure 2: Relationship between the ratio of
E[PPS]/E[PNPS] and arrival rate λ for Tτ =
0,10,53 and 160s.

Figure 3: Graphs of response time vs. arrival rateλ,
for Tτ = 0,10,53,160 and∞ sec.

From Figure 2, we note that whenλ > 0.029, theDPS disk have a normalized power cost larger than 1.
That is, when the arrival rate of files in a power-saving (DPS) disk is larger than 0.029, then its power saving
features should be turned off to avoid incurring more power cost than a non-power-saving (NPS) disk.

4 Procedure for Selecting Parameters of Disk Storage Configuration

4.1 Procedure

Figure 3 describes the relationship between the arrival rate of requeststo one disk and their corresponding
expected response time. In Figure 4 the curvesθPS(λ,0) andθPS(λ,∞) represent the mean response times
of disks hit with request arrivals at rateλ for Tτ = 0 andTτ = ∞ respectively. The entire space covered by
Figure 4 is divided into 5 areas based on the following rules. Letθ′ denote the required constraint, by the
user, on the response time. We will use this figure to describe our procedure calledSmartIdle presented as
Procedure 1. The procedure will determine the necessary number of active disks and the idleness threshold
for these disks. LetR denote the total arrival rate of requests to the system, and suppose the minimum
number of disks required to hold the entire set of files isN. The procedure first computes the arrival rate for
a single disk,λ = R/N. Given a pointX with coordinates〈λ,θ′〉 which represents a combination of request
arrival rate and the required response time in Figure 4, we will show how tocalculate the actual number of
active disks and the idleness threshold based on the area that contains thispoint. First, ifλ ≥ 0.029, since
power-saving mechanism is inefficient according to Figure 2, the procedure will suggest spinning disks for

6



Figure 4: Five areas of the procedure Figure 5: An alternative plot of 4, whenR = 2 per
sec

the whole time, i.e., seti the idleness threshold to∞. Thus, for anyθ′ larger thanθPS(λ,∞) andλ > 0.029
(i.e., Area 1), we knowN disks are enough to meet such constraints because they can offerθPS(λ,∞) of
response time, which is smaller thanθ′. Note that, in this case using less thanN disks, in order to save
power is not feasible becauseN, is the minimum of disks necessary for storing the entire data.

Second, ifλ < 0.029 butθ′ > θPS(λ,0) i.e., the pointX falls in Area 2 of Figure 4. We know that
such a constraint can be satisfied even when the disk is spun down if thereare no requests pending for
service. Thus,N disks are enough and their idleness threshold will be set to 0 to save the mostpower. Using
more thanN disks is not useful because the constraint on response time is always satisfied. In the case that
θPS(λ,∞) < θ′ < θPS(λ,0), (i.e. X lies in Area 3), it is necessary to carefully get an idleness thresholdTτ
that satisfiesθPS(R/N,Tτ) = θ′.

Third, if the givenθ′ < θPS(λ,∞), (i.e., Area 4), we have that the arrival rate is too high for each disk
to finish serving a file withinθ′ even when the power-saving mechanism is disabled to avoid the additional
delay of spinning-up and spinning-down disks. In this case, more thanN disks are needed to obtain a
λ = R/N to be sufficiently low to satisfyθPS(λ,∞) = θ′. Finally, if the pointX falls in Area 5, the given
θ′ is not feasible to be satisfied because it is smaller than the service time. TheProcedure 1, describes the
process of estimating the required number of disks and expected response times for configuring a system of
disks given a usage workload and specific disks characteristics.

4.2 Illustration

The following gives an example on how to use the procedure. Assuming the arrival rate of requests is fixed
at 2 per sec, we can redraw Figure 4 to show the relationship betweenN and the response time. This is now
shown in Figure 5. Observe that Figure 5 can be considered a Y-Axis mirror image of Figure 4. ForN = 50,
if a response time within 20 seconds is desired, then Area 1 of Figure 5 should be used. This implies that
the files should be stored on 50 disks which are kept constantly spinning. However, if an average response
time less than 10 seconds is desired, thenX falls within Area 4. In this case we computeN such that
θPS(2/N,∞) = 10. The solution is given byN = 80. This means that files should be distributed over 80
instead of 50 disks that are constantly spinning.

Next, if N = 100 and the response time constraint is set at 15 sec, then the point falls in Area 3. To get
the possible idleness thresholds, we examine, from Figure 6 those curvesthat cross the line ofθ = 15 when
N ≥ 100. Such a position is marked by the symbolX , where the two curvesθPS(2/N,53) andθPS(2/N,80)
cross the line. So we still use 100 disks to pack the files and set the idleness threshold at 53 seconds, i.e., the
smaller of 53 and 80. This saves more power while meeting the 15-sec constraint. However, if the response
time constraint is 40-sec, the point falls in Area 2 In this case we distribute filesinto the 100 disks again,
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ProcedureSmartIdle(R,N,θ′,λ, i)
Input :

R : The total arrival rate of files to the system.
N : The minimum number of disks to store the data.
θ′ : The constraint on the response time.
λ : Arrival rate of file requests to a disk.
i : The idleness threshold.

Output :
P : The expected mean power cost
θ : The expected mean response time

θPS(λ, i) defines a function for the mean response time of disk hit with request arrival rateλ and
an idleness threshold ofi. ;
Setλ ⇐ R/N; X ⇐ coordinates〈λ,θ′〉 ;
switch AreathatX lies do

caseArea1
Pack files intoN disks that are never spun-down;
SetP ⇐ N ∗PNPS(a); θ ⇐ θNPS(λ) alternativelyθ ⇐ θPS(λ,∞) ;
break ;

caseArea2
Pack files intoN disks ;
Seti ⇐ 0; P ⇐ N ∗PPS(λ,0); θ ⇐ θPS(λ,0) ;

caseArea3
Set idleness thresholdi that satisfiesθPS(R/N, i) = θ′ ;
Pack files intoN disks ;
SetP ⇐ N ∗PPS(λ, i); θ ⇐ θPS(λ, i) ;

caseArea4
Left shift the pointX until it intersects the curve ;
Pack files intoM disks such thatM satisfiesθPS(R/N,∞) = θ′ ; // These are disks

that are never spun-down

SetP ⇐ M×PNPS(R/M); θ ⇐ θNPS(R/M) ;

caseArea5
No solution can satisfy the specified constraints ;
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but set the idleness threshold to zero. This means a disk is spun-down as soon as no requests are pending
for service. This not only saves power but also provides 25 secondsof average response time.

Figure 6: A enlarged area 3 for multiple curves ofθPS(2/N,1)

5 The Simulation

We developed a simulation model to examine the model proposed in Section 3 and compared this with the
SmartIdle procedure described in Section 4. The simulation environment wasdeveloped and tested using
SimPy [11], as illustrated in Figure 7. The environment consists of a workload generator, a file dispatcher,
and a group of hard disks.

File 
Request 

Generator

D0

File 
Dispatcher

D1

DN-2

DN-1

File-to-Disk 
Mapping Table

Figure 7: The configuration of disks in the simula-
tion
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Figure 8: Power consumption of disks in different
modes

5.1 Hard Disk Characteristics

Table 2 shows the characteristics of hard disk used in the simulation. With the specifications taken from [23]
and [27] we built our own hard disk simulation modules. A hard disk is spun down and set into standby mode
(see Figure 8) after it has been idle for a fixed period which is calledidleness threshold [6, 19]. We do not

9



use the recently revised DiskSim simulator [4], that is commonly used in the literature for our simulations
because, it still provides only old and small disk models, e.g., 1998’s 8GBytes disks, and the number of
events needed to handle a file request is highly correlated with file sizes making DiskSim too slow for a
realistic data center simulation that involves disks, each of the order of 500 GBytes and tens of thousands of
files requiring terabytes/petabytes of total data storage.

Table 2: Characteristics of the Hard Disk
Description Value Description Value
Disk model Seagate ST3500630AS Standby power 0.8 Watts
Standard interface SATA Active power 13 Watts
Rotational speed 7200 rpm Seek power 12.6 Watts
Avg. seek time 8.5 msecs Spin up power 24 Watts
Avg. rotation time 4.16 msecs Spin down power 9.3 Watts
Disk size 500GB Spin up time 15 secs
Disk load (Transfer rate) 72 MBytes/sec Spin down time 10 secs
Idle power 9.3 Watts

5.2 Workload Generator

The workload generator supports two different ways to produce file requests. First, the generator can pro-
duce requests based on a log of file accesses to a storage system. We extract the distribution of file file sizes
and the arrival time of each request from the real workload. Second,the generator can follow a Poisson
process to produce requests at a rateR to get files specified in a given list. The sizes of the files in the list
are generated based on a Zipf distribution whose probability distribution is given by

P(x) =
x−K

ζ(N,K)
; where ζ(N,K) =

N

∑
i=1

i−K . (1)

Also, the generator can control the frequency of requests to each file.To determine reasonable parameters
for the Zipf distribution that are close to the actual data accesses, we logged the file requests to the NERSC’s
High Performance Storage System (HPSS) for 30 days (between May 31and June 29, 2008). There were
88,631 files accessed in the 115,832 read requests. The mean size of the files requested was 544 MB. This
requires 7.56 sec to service a file if these files were to be accessed from adisk storage systems with disk
transmission rate of 72MBps. The minimum space required for storing all the requested files is 95 disks.
Next we classified the 88,631 files into 80 bins based on their sizes, where the width of each bin is 128MB.
We then compute the proportion of the number of files in each bin compared with the total number of
files. Figure 9(a) plots these proportions for the 80 bins. Each pointz〈X ,Y 〉 in Figure 9(a), represents the
proportion Y of files with sizes in the interval(X −64,X +64] in MBytes. As we can see this distribution is
closely related to the Zipf distribution because the proportion decreases almost linearly in the log-log scale
of the axes. Figure 9(b) shows the relationship between the sizes of files and their corresponding access
frequencies. In this analysis of accesses to NERSC datasets, the access frequencies of files are independent
of the sizes. We can therefore assume that each file has the same access frequencyf .

5.3 File Dispatcher and Mapping Table

Once a request is generated, the file dispatcher forwards it to the corresponding disk based on the file-to-disk
mapping table. Files are randomly mapped to a specific number of disks. The number of disks and idleness
thresholds are determined by the procedure proposed in Section 4. For the purpose of comparing the power
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consumptions of the DPM strategy, we also generated a mapping table that mapsfiles randomly to all disks
and fix the idleness threshold at 0, 53, 160 secs or∞, i.e., without enabling the power saving features of the
disk. The time to map a file to disk by the dispatcher is ignored since it is negligible.
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Figure 9: Analysis of workload from NERSC

6 Experimental Results

6.1 Evaluation of the Model

We first evaluate the correctness of our analytical model proposed in Section 3. Only one disk is used in
this scenario. The service time of requests has the same distribution and parameters (see Table 2), as those
assumed in the analysis. The simulation ends when it has served 30000 requests. Figures 10 and 11 show
the normalized power cost of the disk and the response time of requests under different values of arrival rate
and idleness threshold respectively. By respectively comparing the two figures with Figures 2 and 3, we can
validate our analysis for power cost and response time.
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6.2 Constraints on Response Time

Next, we examine whether the procedureSmartIdle determines the suitable number of active disks and idle-
ness threshold to meet the response time constraints while still saving power compared with our analytical
model. Suppose we consider using 100 disks and setN = 40 and try to satisfy a response time constraint
of 20 seconds. For comparison, we also plotted the response times and power saving ratio when the disk
idleness threshold is fixed at 53 seconds, which as mentioned before is thecompetitive idleness threshold in
our case.
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Figures 12 and 13 show the power saving and response time plots for a response time constraint of 20-
sec. The SmartIdle procedure design satisfies the response time constraint while saving 60% of power on
average. TheSmartIdle procedure results in a much shorter response time than the specified constraint for
arrival rates ranging from 0.8 to 2.5 and yet saves more power than with fixed 53-sec idleness threshold. In
this interval of arrival rates the point〈λ,θ′〉 always falls in Area 1 and the SmartIdle procedure suggests that
the disks be kept spinning at all times, instead of spinning down after an idleness threshold. Spinning down
a disk after a fixed idleness threshold is inefficient since it not only resultsin a longer response time but also
incurs more power cost than simply spinning disk.

6.3 Using Trace Logs of Scientific Data Accesses

In this subsection we test whether the SmartIdle procedure can be used to derive the configuration of disks
that satisfy the constraint of response time when apply the request arrival rate extracted from a real workload.
Suppose we consider the use of 200 disks with the minimum number required set asN = 96. The arrival
rate of requests is 0.044683. Figure 14 shows the ratio of power savings obtained from usingthe analytical
model, theSmartIdle procedure and fixed idleness threshold of 53 secs. The initial idleness threshold used
varies from 8 to 35 seconds. Figure 15 shows the corresponding response times of obtained in each design
configuration. From Figure 15, we find that disks configuration obtainedfrom applying theSmartIdle not
only meets the constraints, but also provides response time far less than the initial response time constraints
ranging from 8 to 25 sec. Further we see that from Figure 14 that we achieve more power savings than that
the expected savings achievable from the analytical model.

In addition to the NERSC workload, we also tested ourSmartIdle procedure with workloads from the
BaBar project [1]. The BaBar project is a high energy physics experiment with over 600 world-wide col-
laborators from 75 institutions in 10 countries. The data for this experiment isstored at the Stanford Linear
Accelerator Collider (SLAC) site. There are about 86,378 distinct files stored which will require at least
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Figure 14: Power savings between SmartIdle and
fixed idleness threshold values for NERSC data

 0
 5

 10
 15
 20
 25
 30
 35
 40

 5  10  15  20  25  30  35

θ
  

(R
s
p

. 
T

im
e

 i
n

 s
e

c
)

θ’ (Constraint of Rsp. Time)

Model
SmartIdle

SmartIdle(EXP)
Tτ=53

Figure 15: Response times of SmartIdle and fixed
idleness threshold values for NERSC

123 disks of 500GB to store them. The trace log of file requests for Oct 1, 2004 was used in this study. It
contained 93,172 read requests and involved 10,735 distinct files. The average arrival rate (per second) of
the requests is 1.07838, which is much higher than that in the workload of NERSC. The mean size of files
accessed by these requests is 1,235 MB, which requires about 16.5138sec of mean service time,E[S], and
332.438 sec for E[S2] when the disk transmission rate is 72MBps and a single 32GB LRU cache is deployed
in front of all disks.

Compared to the uniformly distributed accesses observed in the NERSC workload (Figure 9(b)), the
workload shows 48% of requests accessing files with size larger than 1.6GB. Further observation shows
these requests target only 783 files that constitute 7.3% of the files involved in all requests.
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Figure 16: Power savings between SmartIdle and
fixed idleness threshold values for BaBar
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Figure 17: Response times of SmartIdle and fixed
idleness threshold values for BaBar data

Figure 16 shows the ratio of power savings incurred while Figure 17 shows the response time of disks
when their idleness threshold are configured by SmartIdle for constraintsvarying from 20 to 45 seconds.
From the two figures, we again find that disk configuration derived fromusingSmartIdle not only meets the
constraints of the response times, but further gives a greater saving than expected by the analytical model.

7 Conclusion and Future Work

In this paper we developed an analytic model to analyze the interaction of file access workload with a disk
system that uses power saving mechanisms. The model allowed us to devise aprocedure that allows design-
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ers to accurately evaluate the trade-offs between energy consumption and response time. The procedure can
be used to determine whether the required response times are achievable bythe current system and what are
the associated energy costs. The procedure also allows designers to tune the performance of the system by
adding or subtracting disks as well as determining idleness thresholds. Using the procedure on simulated
data as well as real life work logs showed significant improvement in energy costs over commonly used
DPM strategies.

Additional work also needs to be done to make dynamic decisions about migrating files between disks if
it is discovered that the arrival rates to disks deviate significantly from theinitial estimates used as an input
to the SmartIdle procedure. We also plan to investigate our techniques with morereal life workloads that
include various mixes of read and write requests. In addition, we will also investigate the effects of various
caching strategies as we believe that cache size and cache replacement policies may significantly affect the
trade-off between power consumption and response time.
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Appendix A: Derivation of Results for Analytical Model
Expressions for computing the power costs and the mean response times are given below.

Case 1, t < Tτ :
P1 = Prob{t < Tτ}; E[G1

PS] = PτE[T1]+PaE[Ta]; andE[T 1
PS] = E[T1]+E[Ta];

where E[T1] is E[t] in Case 1 and can be written asE[T1] =
R Tτ

0 t p(t)dt/
R Tτ

0 p(t)dt wherep(t) is the probability
density function (pdf) oft.
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Case 2, Tτ < t < Tτ +Td :
P2 = Prob{Tτ < t < Tτ +Td}; E[E2

PS] = PτTτ +Gdu +PaE[T2]; andE[T 2
PS] = Tτ +Td +Tu +E[T2];

whereE[T2] is the busy period in Case 2 and can be written as

E[T2] =

R Tτ+Td
Tτ

E[ fTa (Td +Tu − (t −Tτ))]p(t)dt
R Tτ+Td

Tτ
p(t)dt

.

Case 3, (Tτ +Td) < t:
P3 = Prob{Tτ +Td < t}; E[E3

PS] = PτTτ +PdTd +PsbyE[T3]+PuTu +PaE[ fTa(Tu)]; andE[T 3
PS] = Tτ +Td +E[T3]+

Tu +E[ fTa(Tu)];
whereT3 is standby time,E[Tsby], in Case 3 and can be written

E[T3] =

R ∞
Tτ+Td

(t −Tτ −Td)p(t)dt
R ∞

Tτ+Td
p(t)dt

.

Mean Response Time
Similarly, by the above model forDPS, we can calculate the mean sojourn timeθ of a request, i.e. its response time,
by averaging theE[θ] of each case as

E[θPS] =
3

∑
i=1

E[θi]Pi;

wherePi and E[θi] are the probability and the mean request sojourn time, respectively during the cycle of casei.
Besides, since aDNPS does not spin down, we can simply regard itsTτ as∞ and then getE[θNPS] = E[θ1]. Next, recall
that the sojourn time in M/G/1 [9], is

E[θ] =
ρ

1−ρ
E[S2]

2E[S]
+E[S]; (2)

and in M/G/1 with setup timeX , the mean sojourn timeE[θx] is

E[θX ] =
ρ

1−ρ
E[S2]

2E[S]
+

λ−1

λ−1 +E[X ]
+

E[X ]

λ−1 +E[X ]

E[X2]

2E[X ]
+E[S]. (3)

Then, according to the above two equations, we getE[θ1], E[θ2] andE[θ3] as follows:

Case 1, t < Tτ:
Based on equation 2, we haveE[θ1] = (ρ/(1−ρ))(E[S2]/2E[S])+E[S]

Case 2, Tτ < t < Tτ +Td :
From Case 2 of Subsection 3.2, we have that the setup timeX2, of Case 2 isX2 = T2 = Tτ +Td +Tu − t. So we
get

E[X2] =

R Tτ+Td
Tτ

(Ti +Td +Tu − t)p(t)dt
R Ti+Td

Tτ
p(t)dt

. (4)

E[X2
2 ] =

R Tτ+Td
Tτ

(Tτ +Td +Tu − t)2p(t)dt
R Tτ+Td

Tτ
p(t)dt

. (5)

Then, we can expressE[θ2] from 3 by substituting terms with 4 and 5.

Case 3, Tτ +Td < t:
Because the setup time in Case 3 isX3 = Tu, we have

E[θ3] =
ρ

(1−ρ)

E[S2]

2E[S]
+

λ−1

λ−1 +Tu
+

Tu

λ−1 +Tu

Tu

2
+E[S].
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