Abstract
Some relevant algebraic structures involved by the so–called Intuitionistic Fuzzy Sets (IFS) are discussed, with a wide description of their relevant properties especially from the point of view of the algebraic semantic of a logical system. Algebraic comparison with analogous structures involving usual Fuzzy Sets are discussed.
This work has been supported by MIUR\PRIN project ”Mathematical aspects and forthcoming applications of automata and formal languages”.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)
Atanassov, K.T.: Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade’s paper terminological difficulties in fuzzy set theory - the case of Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 156, 496–499 (2005)
Atanassov, K.T., Stoeva, S.: Intuitionistic fuzzy sets. In: Polish Symp. on Interval & Fuzzy Mathematics (Poznan), pp. 23–26 (August 1983)
Cattaneo, G., Ciucci, D.: Heyting Wajsberg algebras as an abstract environment linking fuzzy and rough sets. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS, vol. 2475, pp. 77–84. Springer, Heidelberg (2002)
Cattaneo, G., Ciucci, D.: An algebraic approach to shadowed sets. Electronic Notes in Theoretical Computer Science 82(4), 64–75 (2003); Proceedings of International Workshop on Rough Sets in Knowledge Discovery and Soft Computing, April 12–13, 2003, Warsaw
Cattaneo, G., Ciucci, D.: Generalized negations and intuitionistic fuzzy sets. A criticism to a widely used terminology. In: Proceedings of International Conference in Fuzzy Logic and Technology (EUSFLAT 2003) (Zittau), University of Applied Sciences of Zittau–Goerlitz, pp. 147–152 (2003)
Cattaneo, G., Ciucci, D.: Intuitionistic fuzzy sets or orthopair fuzzy sets? In: Proceedings of International Conference in Fuzzy Logic and Technology (EUSFLAT 2003) (Zittau), University of Applied Sciences of Zittau–Goerlitz, pp. 153–158 (2003)
Cattaneo, G., Ciucci, D.: Shadowed sets and related algebraic structures. Fundamenta Informaticae 55, 255–284 (2003)
Cattaneo, G., Ciucci, D.: Algebraic structures for rough sets. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 218–264. Springer, Heidelberg (2004)
Cattaneo, G., Ciucci, D.: Basic intuitionistic principles in fuzzy set theories and its extensions (a terminological debate on Atanassov IFS). Fuzzy sets and Systems 157, 3198–3219 (2006)
Cattaneo, G., Ciucci, D.: Theoretical aspects of shadowed sets. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 603–627. John Wiley & Sons, Chichester (2008)
Cattaneo, G., Ciucci, D., Dubois, D.: Algebraic models of deviant modal logics based on Kleene algebras (preprint) (2008)
Cattaneo, G., Ciucci, D., Giuntini, R., Konig, M.: Algebraic structures related to many valued logical systems. part I: Heyting Wajsberg algebras. Fundamenta Informaticae 63(4), 331–355 (2004)
Cattaneo, G., Marino, G.: Non-usual orthocomplementations on partially ordered sets and fuzziness. Fuzzy Sets and Systems 25, 107–123 (1988)
Cattaneo, G., Nisticò, G.: Brouwer-Zadeh posets and three valued Łukasiewicz posets. Fuzzy Sets and Systems 33, 165–190 (1989)
Coker, D.: A note on intuitionistic sets and intuitionistic points. Turkish Journal of Mathematics 20, 343–351 (1996)
Cornelis, C., Deschrijver, G., Kerre, E.: Implication in intuitionistic fuzzy and interval–valued fuzzy set theory: construction, classification, application. International Journal of Approximate Reasoning 35, 55–95 (2004)
Deschrijver, G., Cornelis, C., Kerre, E.: Triangle and square: a comparison. In: IPMU 2004, pp. 1389–1395 (2004)
Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory - the case of Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 156, 485–491 (2005)
Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.E.: Triangle algebras: A formal logic approach to interval–valued residuated lattices. Fuzzy Sets and Systems 159, 1042–1060 (2008)
Gentilhomme, M.Y.: Les ensembles flous en linguistique. Cahiers de linguistique theoretique et applique, Bucarest 47, 47–65 (1968)
Grzegorzewski, P., Mrowka, E.: Some notes on (Atanassov) Intuitionistic fuzzy sets. Fuzzy Sets and Systems 156, 492–495 (2005)
Hájek, P.: Metamathematics of fuzzy logic. Kluwer, Dordrecht (1998)
Heyting, A.: Intuitionism: an introduction, 2nd edn. North Holland, Amsterdam (1966) (first edn. 1956)
Iwinski, T.: Algebras for rough sets. Bulletin of the Polish Academy of Sciences, series: Mathematics 35, 673–683 (1987)
Monteiro, A.: Sur les algèbres de Heyting symétriques. Portugaliae Mathematica 39, 1–237 (1980)
Pagliani, P.: Rough Sets and Nelson Algebras. Fundamenta Informaticae 27(2,3), 205–219 (1996)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)
Pedrycz, W.: Shadowed sets: Representing and processing fuzzy sets. IEEE Transaction on Systems, Man and Cybernetics - PART B: Cybernetics 28(1), 103–109 (1998)
Yao, Y., Li, X.: Comparison of rough-set and interval-set models for uncertain reasoning. Fundamenta Informaticae 27, 289–298 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cattaneo, G., Ciucci, D. (2009). A Survey on the Algebras of the So–Called Intuitionistic Fuzzy Sets (IFS). In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-02282-1_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02281-4
Online ISBN: 978-3-642-02282-1
eBook Packages: Computer ScienceComputer Science (R0)