Skip to main content

An Experimental Validation of Some Indexes of Fuzzy Clustering Similarity

  • Conference paper
Fuzzy Logic and Applications (WILF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5571))

Included in the following conference series:

  • 922 Accesses

Abstract

Measuring the similarity between clusterings is a classic problem with several proposed solutions. In this work we focus on measures based on co-association of data pairs and perform some experiments to investigate whether specificities can be highlighted in their behaviour. A unified formalism is used, which allows easy generalization of several indexes to a fuzzy setting. A selection of indexes is presented, and experiments investigate simplified cases and a paradigmatic real-world case, as an illustration of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)

    Book  MATH  Google Scholar 

  2. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  3. Bezdek, J.C.: Cluster validity with fuzzy sets. Cybernetics and Systems 3(3), 58–73 (1973)

    MathSciNet  MATH  Google Scholar 

  4. Wang, W., Zhang, Y.: On fuzzy cluster validity indices. Fuzzy Sets Syst. 158(19), 2095–2117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Filippone, M., Masulli, F., Rovetta, S., Zini, L.: Comparing fuzzy approaches to biclustering. In: Tagliaferri, R., Masulli, F. (eds.) CIBB 2008 proceedings (in press) (2008)

    Google Scholar 

  6. Kuncheva, L.I., Vetrov, D.P.: Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1798–1808 (2006)

    Article  Google Scholar 

  7. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 8, pp. 93–103 (2000)

    Google Scholar 

  8. Filippone, M., Masulli, F., Rovetta, S., Mitra, S., Banka, H.: Possibilistic approach to biclustering: An application to oligonucleotide microarray data analysis. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 312–322. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Fred, A.L.N., Jain, A.K.: Data clustering using evidence accumulation. In: International Conference on Pattern Recognition, vol. 4 (2002)

    Google Scholar 

  10. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Menger, K.: Statistical metrics. Proceedings of the National Academy of Sciences of the United States of America 28(12), 535–537 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klement, E.: A survey on different triangular norm-based fuzzy logics. Fuzzy Sets and Systems 101(2), 241–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meilă, M.: Comparing clusterings–an information based distance. Journal of Multivariate Analysis 98(5), 873–895 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  15. Student: The probable error of a mean. Biometrika 6(1), 1–25 (March 1908)

    Google Scholar 

  16. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  17. Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  18. Fowlkes, E.B., Mallows, C.L.: A method to compare two hierarchical clusterings. Journal of the American Statistical Association 78, 553–569 (1983)

    Article  MATH  Google Scholar 

  19. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification, 193–218 (1985)

    Google Scholar 

  20. Anderson, E.: The irises of the gaspe peninsula. Bulletin of the American Iris Society 59, 25 (1935)

    Google Scholar 

  21. Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recognition Letters 11, 589–594 (1990)

    Article  MATH  Google Scholar 

  22. Campello, R.J.G.B.: A fuzzy extension of the rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters 28(7), 833–841 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rovetta, S., Masulli, F. (2009). An Experimental Validation of Some Indexes of Fuzzy Clustering Similarity. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02282-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02281-4

  • Online ISBN: 978-3-642-02282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics