Abstract
Measuring the similarity between clusterings is a classic problem with several proposed solutions. In this work we focus on measures based on co-association of data pairs and perform some experiments to investigate whether specificities can be highlighted in their behaviour. A unified formalism is used, which allows easy generalization of several indexes to a fuzzy setting. A selection of indexes is presented, and experiments investigate simplified cases and a paradigmatic real-world case, as an illustration of application.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)
Bezdek, J.C.: Cluster validity with fuzzy sets. Cybernetics and Systems 3(3), 58–73 (1973)
Wang, W., Zhang, Y.: On fuzzy cluster validity indices. Fuzzy Sets Syst. 158(19), 2095–2117 (2007)
Filippone, M., Masulli, F., Rovetta, S., Zini, L.: Comparing fuzzy approaches to biclustering. In: Tagliaferri, R., Masulli, F. (eds.) CIBB 2008 proceedings (in press) (2008)
Kuncheva, L.I., Vetrov, D.P.: Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1798–1808 (2006)
Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 8, pp. 93–103 (2000)
Filippone, M., Masulli, F., Rovetta, S., Mitra, S., Banka, H.: Possibilistic approach to biclustering: An application to oligonucleotide microarray data analysis. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 312–322. Springer, Heidelberg (2006)
Fred, A.L.N., Jain, A.K.: Data clustering using evidence accumulation. In: International Conference on Pattern Recognition, vol. 4 (2002)
Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
Menger, K.: Statistical metrics. Proceedings of the National Academy of Sciences of the United States of America 28(12), 535–537 (1942)
Klement, E.: A survey on different triangular norm-based fuzzy logics. Fuzzy Sets and Systems 101(2), 241–251 (1999)
Meilă, M.: Comparing clusterings–an information based distance. Journal of Multivariate Analysis 98(5), 873–895 (2007)
Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)
Student: The probable error of a mean. Biometrika 6(1), 1–25 (March 1908)
Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)
Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)
Fowlkes, E.B., Mallows, C.L.: A method to compare two hierarchical clusterings. Journal of the American Statistical Association 78, 553–569 (1983)
Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification, 193–218 (1985)
Anderson, E.: The irises of the gaspe peninsula. Bulletin of the American Iris Society 59, 25 (1935)
Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recognition Letters 11, 589–594 (1990)
Campello, R.J.G.B.: A fuzzy extension of the rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters 28(7), 833–841 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rovetta, S., Masulli, F. (2009). An Experimental Validation of Some Indexes of Fuzzy Clustering Similarity. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-02282-1_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02281-4
Online ISBN: 978-3-642-02282-1
eBook Packages: Computer ScienceComputer Science (R0)