Skip to main content

Learning Fuzzy Systems by a Co-Evolutionary Artificial-Immune-Based Algorithm

  • Conference paper
Fuzzy Logic and Applications (WILF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5571))

Included in the following conference series:

Abstract

To create a Fuzzy System from a numerical data, it is necessary to generate rules and memberships representing the analyzed set. This goal demands to break the problem into two parts: one responsible for learning the rules and another responsible for optimizing the memberships. This paper uses a Gradient-based Artificial Immune System with a different population for each of these parts. By simultaneously co-evolving these two populations, it is possible to exchange information between them enhancing the fitness of the final generated system. To demonstrate this approach, a fuzzy system for autonomous vehicle maneuvering was developed by observing a human driver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pal, N.R., Chakraborty, S.: Fuzzy Rule Extraction from ID3-Type Decision Trees for Real Data. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics 31(5), 745–754 (2001)

    Article  Google Scholar 

  2. Quinlan, J.R.: C4.5.: Programs for Machine Learning. Morgan Kaufmann, San Mateo, Inc. (1993)

    Google Scholar 

  3. Alves, R.T., Delgado, R.M., Lopes, H.S., Freitas, A.A.: An Artificial Immune System for Fuzzy-Rule Induction in Data Mining. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1011–1020. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Wang, L., Mendel, J.M.: Generating Fuzzy Rules by Learning from Examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  5. Abido, M.A.: A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch. Int. Journal of Electrical Power and Energy Systems 25(2), 97–105 (2003)

    Article  Google Scholar 

  6. Li, Y., Ha, M., Wang, X.: Principle and Design of Fuzzy Controller Based on Fuzzy Learning from Examples. In: Proc. of the 1st Int. Conf. on Machine Learning and Cybernetics, vol. (3), pp. 1441–1446 (2002)

    Google Scholar 

  7. Pei, Z.: A Formalism to Extract Fuzzy If-Then Rules from Numerical Data Using Genetic Algorithms. In: Int. Symposium on Evolving Fuzzy Systems, pp. 143–147 (2006)

    Google Scholar 

  8. Abe, S., Lan, M.: Fuzzy Rules Extraction Directly from Numerical Data for Function Approximation. IEEE Transactions on Systems, Man, and Cybernetics 25(1), 119–129 (1995)

    Article  MathSciNet  Google Scholar 

  9. Zhao, Y., Collins, E.G., Dunlap, D.: Design of genetic fuzzy parallel parking control systems. In: Proc. American Control Conference, vol. 5, pp. 4107–4112 (2003)

    Google Scholar 

  10. de Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)

    Article  Google Scholar 

  11. Honório, L.M., da Silva, A.M.L., Barbosa, D.A.: A Gradient-Based Artificial Immune System Applied to Optimal Power Flow Problems. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Honorio, L.M.: Virtual Manufacture Software. Information Technology Institute/UNIFEI, http://www.virtualmanufacturing.unifei.edu.br

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vermaas, L.L.G., Honorio, L.M., Freire, M., Barbosa, D. (2009). Learning Fuzzy Systems by a Co-Evolutionary Artificial-Immune-Based Algorithm. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02282-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02281-4

  • Online ISBN: 978-3-642-02282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics