Skip to main content

Fuzzy Quantification Using Restriction Levels

  • Conference paper
Fuzzy Logic and Applications (WILF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5571))

Included in the following conference series:

  • 952 Accesses

Abstract

We introduce a model for the evaluation of fuzzy quantified expressions involving imprecise concepts. Imprecise concepts are assumed to be represented via restriction levels, a recently introduced representation of imprecision that extends the representation of fuzzy sets and introduces new operators. The proposal verifies all the properties required for the evaluation of quantified sentences, including all the properties involving negation. Particularly, the evaluation of “Some of A are ¬A” is definitely 0 for any fuzzy set A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barro, S., Bugarín, A., Cariñena, P., Díaz-Hermida, F.: Voting-model based evaluation of fuzzy quantified sentences: A general framework. Fuzzy Sets and Systems 146(1), 97–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosc, P., Lietard, L.: Monotonic quantified statements and fuzzy integrals. In: Proc. NAFIPS/IFIS/NASA Conference, pp. 8–12 (1994)

    Google Scholar 

  3. Cui, L., Li, Y.: Linguistic quantifiers based on choquet integrals. Int. Journal of Approximate Reasoning 48, 559–582 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delgado, M., Sánchez, D., Vila, M.A.: Fuzzy cardinality based evaluation of quantified sentences. International Journal of Approximate Reasoning 23, 23–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Glöckner, I.: DFS - an axiomatic approach to fuzzy quantification. Technical Report TR97-06, Technical Faculty, University Bielefeld, 33501 Bielefeld, Germany (1997)

    Google Scholar 

  6. Glöckner, I.: Fuzzy Quantifiers: A Computational Theory. Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  7. Lietard, L., Rocacher, D.: Evaluation of quantified statements using gradual numbers. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, Hershey, PA, USA, pp. 246–269 (2008)

    Google Scholar 

  8. Sánchez, D., Delgado, M., Vila, M.A.: A restriction level approach to the representation of imprecise properties. In: IPMU 2008, pp. 153–159 (2008)

    Google Scholar 

  9. Sánchez, D., Delgado, M., Vila, M.A.: RL-numbers: An alternative to fuzzy numbers for the representation of imprecise quantities. In: FUZZ-IEEE 2008, pp. 2058–2065 (2008)

    Google Scholar 

  10. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on System, Man and Cybernetics 18(1), 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ying, M.: Linguistic quantifiers modeled by sugeno integrals. Artificial Intelligence 170, 581–606 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Computing and Mathematics with Applications 9(1), 149–184 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez, D., Delgado, M., Vila, MA. (2009). Fuzzy Quantification Using Restriction Levels. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02282-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02281-4

  • Online ISBN: 978-3-642-02282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics